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ABSTRACT: Heterogeneity in fitness components consists of fixed
heterogeneity due to latent differences fixed throughout life (e.g., ge-
netic variation) and dynamic heterogeneity generated by stochastic
variation. Their relative magnitude is crucial for evolutionary pro-
cesses, as only the former may allow for adaptation. However, the
importance of fixed heterogeneity in small populations has recently
been questioned. Using neutral simulations (NS), several studies
failed to detect fixed heterogeneity, thus challenging previous results
from mixed models (MM). To understand the causes of this discrep-
ancy, we estimate the statistical power and false positive rate of both
methods and apply them to empirical data from a wild rodent pop-
ulation. While MM show high false-positive rates if confounding
factors are not accounted for, they have high statistical power to de-
tect real fixed heterogeneity. In contrast, NS are also subject to high
false-positive rates but always have low power. Indeed, MM analyses
of the rodent population data show significant fixed heterogeneity in
reproductive success, whereas NS analyses do not. We suggest that
fixed heterogeneity may be more common than is suggested by NS
and that NS are useful only if more powerful methods are not appli-
cable and if they are complemented by a power analysis.

Keywords: Chionomys nivalis, individual-based model, generalized
linear mixed model, simulations, snow vole, statistical power.

Introduction

Within species, individual variation in lifetime reproduc-
tive success (LRS) is plentiful, with most individuals produc-
ing few or no offspring and a few individuals producing a
large share of the next generation (Clutton-Brock 1988; Stearns
1992). Given their skewed and heterogeneous nature, LRS
distributions are unlikely to be solely shaped by unstructured
environmental stochasticity. Instead, individuals seem to dif-
fer in their probability of surviving or reproducing (Kendall
et al. 2011).
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Often, this individual heterogeneity in LRS is assumed
to originate from latent individual differences that are fixed
throughout an individual’s life, that is, it is assumed that there
is individual heterogeneity in frailty, quality, or fitness (e.g.,
Vaupel et al. 1979; Morris 1998; Cam and Monnat 2000).
This is commonly referred to as fixed heterogeneity. Ge-
netic variation is one source of fixed heterogeneity (e.g., Keller
and Waller 2002; Ellegren and Sheldon 2008), but epige-
netic, maternal, and permanent environmental effects may
also be important (Turner 2009; Wolfand Wade 2009). This
fixed variation is usually measured retrospectively; in some
cases, it may have arisen at fertilization, but it may also be
shaped by the environment an individual experiences through-
out its life, for instance, through variation in habitat choice
or through gene-by-environment interactions. It is impor-
tant to distinguish fixed heterogeneity as it is used here—that
is, as the repeatability of individual performance—from other
sources of variation that are not due to the properties of
individuals (e.g., climatic variations among years). Indeed,
only fixed differences among individuals can be the target
of selection and allow for adaptation, provided that these
fixed differences are passed on to the next generation—be it
through genes (Keller and Waller 2002), philopatry (Schau-
ber et al. 2007), or other processes (Bonduriansky 2012).

Recent publications (Tuljapurkar et al. 2009; Steiner et al.
2010; Orzack et al. 2011; Steiner and Tuljapurkar 2012)
have argued forcefully that invoking fixed differences among
individuals (i.e., fixed heterogeneity) in fitness components
is rarely required to explain the observed heterogeneity in
LRS. Instead, they emphasize that due to the stochasticity
of individual life histories, individual heterogeneity is ex-
pected even in populations of identical individuals (Cas-
well 2011). Indeed, if individuals take a random trajectory
through the various life-history stages, and if these stages
are associated with differential reproductive and survival
rates, the population-level distribution of LRS may be skewed
and heterogeneous. This type of heterogeneity is referred to
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as dynamic heterogeneity (Tuljapurkar etal. 2009). Crucially,
dynamic heterogeneity originates from differences among
life stages, whereas fixed heterogeneity originates from vari-
ation in the properties of individuals.

Given that most life-history traits are heritable to some
degree (Mousseau and Roff 1987; Postma 2014), it is beyond
doubt that some fixed heterogeneity is present in most wild
populations. At the same time, the cumulative effects of in-
dividual histories on their realized life span and reproduc-
tive success are also unquestionable (Caswell 2011). What
is subject to discussion, however, is the relative importance
of fixed, versus dynamic, heterogeneity in shaping variation
in LRS. Steiner and Tuljapurkar (2012) suggested that, at
least in small populations, the drift generated by large life-
history stochasticity is too large for fixed heterogeneity to
play a significant role in shaping evolution and demography
at the level of a single population. Instead, they have pro-
posed dynamic heterogeneity as the null model to explain
any observed heterogeneity. Only if this null model can be
rejected should we consider an additional role for fixed het-
erogeneity in shaping variation in LRS or fitness components.

Tuljapurkar et al. (2009) have suggested that an appro-
priate tool to test for fixed heterogeneity is provided by
neutral simulations (hereafter, NS), which generate sum-
mary statistics describing the distribution of LRS and the
pattern of life-stage transitions expected in the absence of
fixed heterogeneity. These expectations can subsequently be
compared to their observed counterparts to detect departures
from neutrality due to the existence of fixed heterogeneity.

The application of NS to data for two seabird popula-
tions (Steiner et al. 2010; Orzack et al. 2011) and to a com-
pilation of 22 vertebrate populations (Tuljapurkar et al.
2009) has been unable to reject the null hypothesis of neu-
trality, leading to the conclusion that dynamic heterogene-
ity alone can explain the observed variation in life histories
in most populations. Indeed, we are aware of only one study
in which NS rejected neutrality—for one of three reproduc-
tive parameters in a roe deer population (Plard et al. 2012).

In contrast to studies relying on NS, studies employing
linear mixed models (hereafter, MM) commonly report evi-
dence for fixed heterogeneity (e.g., Cam and Monnat 2000;
Royle 2008; Chambert et al. 2013, 2014; Guillemain et al.
2013). Interestingly, Cam et al. (2013) have provided evi-
dence for fixed heterogeneity in a data set for which the
existence of fixed heterogeneity had been dismissed based
on NS (Steiner et al. 2010). However, MM and NS differ
in how they deal with data: MM rely on repeated mea-
surements of individuals, while NS use summary statistics
aggregated at the population level. Compared to MM, NS
are thus less data demanding but might be less sensitive to
statistical signals at the individual level. On the other hand,
aggregation might allow NS to detect effects that emerge
only at the population level and are invisible to MM. More
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formally, the discrepancy between NS and MM suggests
that they differ in either their type I (i.e., false positive) error
rate or in their type II (i.e., power) error rate. For instance,
the opposite conclusions reached by NS in Steiner et al.
(2010) and MM in Cam et al. (2013) may be the result of
the statistical power of the NS being too low, preventing
the detection of fixed heterogeneity (i.e., a type II error).
Alternatively, MM may have high rates of type I error
if the individual-level variances estimated by the MM are
spurious or if they are unduly interpreted as the mark of
fixed heterogeneity.

Applying both methods to data with known properties
allows for the estimation of both types of error rates and
thereby provides insight into the ability of both methods
to detect fixed heterogeneity. Unfortunately, however, fixed
heterogeneity is the result of latent, unobservable traits,
which cannot be inferred without a modeling step (Cam
et al. 2013), and it is precisely the performance of this mod-
eling step that we investigate here. Computer simulations
provide a way around this problem, as they allow one to
apply methods to data sets with known underlying proper-
ties (e.g., Brooks et al. 2013; de Villemereuil et al. 2013).

Here we simulate a series of longitudinal, individual-
based data sets through an algorithm that introduces vary-
ing amounts of fixed and dynamic heterogeneity in survival
and reproduction. For illustrative purposes, these simula-
tions are parametrized to match a population of snow voles
(Chionomys nivalis, Martins 1842) located in the Swiss
Alps. In order to assess the type I and type II error rates
of both NS and MM, we subsequently analyze the simu-
lated data sets using both methods. In a final step, we use
these results to interpret the results of the application of
both methods to the real snow vole data set. Figure 1 shows
a diagram summarizing our approach. Altogether, our re-
sults highlight the lack of statistical power of NS but at the
same time emphasize that MM output should be interpreted
with care. We discuss the origin of the discrepancy between
NS and MM and what this tells us about the nature of bio-
logical variability.

Material and Methods
Data Simulation

The simulation model matches the life cycle of the popula-
tion of snow voles that we use in the empirical comparison
of both methods. The monitoring of this population is dis-
cussed in some detail in appendix E (apps. A-G available
online). Only two age classes are modeled (nonreproduc-
ing juveniles and reproducing adults), and there are no sex-
specific or spatiotemporal effects on fitness components, as
the uncertainty with respect to the appropriate specifica-
tion of these models would introduce an additional layer of
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A: Data simulations Parameter B: Tests for fixed heterogeneity
combinations
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Figure 1: Illustration of the simulation and testing process. A, Data simulation: The simulation model is parametrized using the life cycle and
vital rates of a snow vole population, along with additional, unknown parameters introducing fixed heterogeneity (¢} and ¢7) and dynamic
heterogeneity (m and c). Different combinations of these simulation parameters define 249 scenarios. For each scenario, 1,000 data sets are
simulated. B, Tests for fixed heterogeneity: Each simulated data set is tested for the presence of fixed heterogeneity with both mixed models
(MM), using likelihood ratio tests (LRT) on survival (¢) and reproduction (p), and neutral simulations (NS), using six different tests (see main
text). Because o}, and o} are known for each simulated data set, we can estimate the type I and type II error rates under each scenario.
C, Analysis of the snow vole data: both MM and NS are applied to the real snow vole data set, and the outcome is interpreted in the light

of the estimated error rates of each test.

complexity (see, e.g., Cam et al. 2013). All simulated popula-
tions are monitored for 10 years. For every individual, we
have perfect knowledge of survival and reproduction during
the study period, but their fate beyond this period is un-
known. Every year, a new cohort of 100 juveniles appears.
After 1 year, these juveniles become adults and start repro-
ducing. Every year, adults can reproduce once; the number
of offspring produced by an individual is labeled annual re-
productive success (ARS). In the real snow vole population,
there is no apparent senescence in survival, and the maxi-
mum age observed is 4 years old. Accordingly, in the simu-
lations, adult survival probability does not vary with age until
the fourth year, but all individuals still alive at that point die
during the next winter. Mortality events occur after birth for
juveniles and after reproduction for adults. A single sex is
simulated, as the two sexes are generally analyzed separately
in NS, and in MM, sex differences in the mean are accounted
for by fitting sex as a fixed factor.

We define a scenario as a collection of simulation parame-
ters. For each scenario, we simulated 1,000 data sets, that is,
1,000 putative populations with the same underlying prop-
erties. In an attempt to detect evidence for fixed heteroge-
neity, each data set was then analyzed using MM and NS.
Note the potential for confusion between the simulation of
the data sets, on the one hand, and the neutral simulation
method, on the other. The latter is always referred to as NS.
Simulations were carried out using a C++ program (available
at https://github.com/timotheenivalis/FixDynHet), using the

pseudorandom number generator Mersenne Twister (Matsu-
moto and Nishimura 1998) and a command file procedure
following that of IBDSim (Leblois et al. 2009). The analy-
ses of the simulation output were all conducted in R 3.1.0
(R Core Team 2014), using the package Ime4 (ver. 1.1-7; Bates
et al. 2014).

Due to demographic stochasticity (sensu Fox and Ken-
dall 2002), all simulated data sets contain a baseline level
of dynamic heterogeneity. Indeed, according to Tuljapurkar
et al. (2009), the presence of dynamic heterogeneity results
in the “scaled sequence entropy of the transition matrix be-
tween reproductive stages” (p. 96; hereafter, simply referred
to as entropy) being greater than zero, which is always the
case here. Entropy measures the rate at which the diversity
of life-history trajectories increases with their length, which
is due to random transitions between stages with different
survival probabilities and reproductive outcomes (Tuljapurkar
et al. 2009).

Beyond this baseline level of dynamic heterogeneity, het-
erogeneity in fitness components is introduced either as
explicit fixed heterogeneity or through a Markovian process.
For the simulation of fixed heterogeneity, at birth, each in-
dividual receives a fixed quality as reproducer and survivor.
These fixed qualities do not change over the course of its
life. Therefore, some individuals intrinsically have a high
probability to perform well, and some individuals have a
high probability to perform poorly, irrespective of their past
performance, as in a classic frailty model (Vaupel et al. 1979).

This content downloaded from 150.203.068.126 on May 22, 2019 20:37:56 PM
All use subject to University of Chicago Press Terms and Conditions (http://www.journals.uchicago.edu/t-and-c).



In contrast, for the simulations using a Markovian process,
an individual’s probability to survive and to achieve a cer-
tain ARS is not fixed but changes at each time step and de-
pends solely on its ARS the time step before. Therefore, these
data contain dynamic heterogeneity only. However, some
of this mimics fixed heterogeneity because individual per-
formances can persist over time. Generalized linear mixed
models were used to check that the properties of the simu-
lated data sets matched the model and the parameters used
to generate them (see app. A).

Simulations with Explicit Fixed Heterogeneity. At birth, ev-
ery individual receives a quality as reproducer g,,, which is
normally distributed with a mean of 0 and a variance equal
to o7, that is, q,; ~ N (0,02). Individuals also receive a qual-
ity as survivor g, with g,; ~N(0,03). These qualities are
fixed for the lifetime of an individual. Because trade-offs be-
tween survival and reproduction are not considered here,
the two qualities are drawn independently for each individ-
ual. The variances o} and o} represent the amount of fixed
heterogeneity in reproduction and survival, respectively.

If individual i is an adult at time ¢, its annual reproduc-
tive success, p;;, is drawn from a Poisson distribution,

pir ~ Plexp(log(u,) + g,:))s (1

where p, is the mean annual reproductive success. For an
individual with g,; = 0, that is, the average individual in a
population with fixed heterogeneity, the parameter of the
Poisson distribution (exp(log(u,) + ¢,,)) reduces to the pop-
ulation mean ARS (u,). The qualities for reproduction (g,.)
are normally distributed on the log-transformed scale of
ARS.

The survival outcome of an individual i at time ¢, ¢,,, is
zero (death) if the individual is 4 years old and otherwise is
drawn from a Bernoulli distribution,

¢z‘,t ~ B(logit_l(logit(ms +ji,t6j) + qw)), (2)

where logit(p) = log(p/[1 — p]), and its inverse function
logit '(x) = 1/[1 + exp(—x)], where j;, is a Boolean variable
equal to 0 for adults and 1 for juveniles, and where 3, is the
difference between the mean survival probability of juve-
niles and adults. For an individual with g,; = 0, the prob-
ability of survival (logit ' (logit(us + ji.8;) + g,:)) reduces to
(pg + jiiB;), the age-specific mean survival probability. The
qualities for survival (g, ) are normally distributed on the
logit-transformed scale.

The mean of a log (or a logit) distribution is, in general,
not equal to the log (or the logit) of the mean of this dis-
tribution (i.e., log(x) # log(x)). Hence, Gaussian variance
in individual qualities introduces a bias on the log or logit
scale in the mean-realized ARS and survival. If not cor-
rected for, this bias causes the distributions of ARS and

Successful by Chance? 63

survival to deviate from their neutral expectations, which
could be interpreted as evidence for fixed heterogeneity. To
this end, the median individual qualities, g, and g,, were
iteratively modified so that the realized population means do
not depend on the variances in individual qualities.

Because they are fixed for life, the individual qualities
are the target of selection. Indeed, selection, that is, the
individual-level covariance between quality and relative LRS,
increases with increasing variances (o and o3; app. C). It
could thus be argued that in response to this selection, mean
latent qualities should increase and their variances decrease
over time. However, here we chose not to simulate a trans-
generational response to selection, as this introduces an un-
necessary layer of complexity. First, a phenotypic response
to selection on components of fitness is not necessarily ex-
pected. For example, environmental deterioration, which
may be the result of an increase in mean competitiveness
(Fisher 1958; Hadfield et al. 2011), may mask a genetic change.
Second, only the additive genetic part of the variation can
respond to selection, and genetic variation may be renewed
through migration, mutations, and balancing selection (Fisher
1958; Charlesworth 2015). Therefore, simulating a response
to selection would require much more complicated sim-
ulations and many more assumptions (e.g., an explicit ge-
netic architecture for fitness, mechanisms to maintain ge-
netic variation, competitive interactions). Finally, both MM
and NS are blind to temporal variation, as they compute sta-
tistics averaged over the whole data set, and even if a response
to selection were apparent, it would have little effect on their
performance.

The simulation framework outlined above closely matches
the structure of the MM later used to analyze the simulated
data. Although we believe this simulation framework to
be closest to biological reality, it could be argued that this
may result in an overestimation of the ability of MM to
deal with real data. Therefore, two alternative simulation
structures not exactly matching the structure of MM were
used. In the first, fixed heterogeneity was introduced on the
original, rather than transformed, scale of survival prob-
ability and expected reproductive success. The results from
this first alternative simulation structure did not differ qual-
itatively from the results obtained with the standard sim-
ulation structure, so they are presented in appendix D. The
second alternative structure considers identical individu-
als—that is, there is no explicit fixed heterogeneity—and a
Markovian process with structured transition probabilities
between reproductive stages and survival probabilities (see
below).

Simulations with a Markovian Process. Simulations were
carried out as previously described, except that ARS and sur-
vival probabilities depended on their previous state and not
on fixed individual qualities. This matches the structure of
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the NS as proposed by Tuljapurkar et al. (2009) and is re-
ferred to as the “full dynamic model” in Plard et al. (2012).
Note that in this model, as shown in Plard et al. (2012), the
nonrandom transition probabilities of the Markovian pro-
cess can be interpreted either as the result of fixed hetero-
geneity (if successful animals have a higher-than-average
probability of remaining successful because of their individ-
ual properties, such as genetic quality) or of dynamic hetero-
geneity (if the persistence of success comes from the prop-
erties of reproductive stages rather than individuals, e.g.,
if only individuals that have a territory can reproduce and
these individuals are more likely than nonreproducers to
have a territory next year). Indeed, for short-lived species, a
Markovian process produces among-individual variance be-
cause there are only a few observations per individual, and
the first outcome of a Markov chain can have a big influ-
ence on the mean individual outcome. In long-lived spe-
cies, on the other hand, mean individual performances will
asymptotically approach the population mean.

In these simulations, the ARS of individual i at time ¢,
04> follows

Pir ~ P(”p) (3a)
for second-year individuals and
Pir ~ P(I’Lp + m(Pi,z—l - Mp)) (3b)

for older individuals, where p;,, is the ARS of the focal in-
dividual the year before, p, is the mean ARS of the popula-
tion, and m controls the strength of the Markovian process,
that is, the degree to which current reproductive success
depends on the previous reproductive success. Only positive
values of m were used in order to produce an individual per-
sistence of ARS, which may mimic latent fitness (see below).

Similarly, the survival outcome of individual i at time ¢,
¢, follows

i~ B(M¢ + Bj) (4a)

for juveniles and

¢, ~ B(logit ' (logit(py) + c(oi—1 — 1,)))  (4b)

for adults, where p, is the mean adult survival, §; is the dif-
ference between the mean survival of juveniles and adults,
and ¢ controls the correlation between reproduction and
survival. Survival probability at time ¢ depends on ARS at
time ¢ — 1 rather than on previous survival, as the latter is
always 1 for surviving individuals. Again, only positive val-
ues of ¢ were used to simulate persistence of the individual
propensity to survive. The positive correlation between succes-
sive survival probabilities arises indirectly through the pos-
itive correlation between successive ARS, combined with
the positive correlation between ARS and survival.

In the presence of allocation trade-offs between different
life-history traits or between successive expressions of the
same life-history trait, negative correlations (i.e., m <0) and
autocorrelations (i.e., c<0) could be expected. However,
phenotypic correlations between life-history traits are often
positive (Stearns 1992, chapter 4). This discrepancy is the
result of the variance in resource acquisition, which is re-
lated to variance in latent fitness, being larger than the var-
iance in resource allocation (van Noordwijk and de Jong
1986). Based on this, positive values of ¢ and m are in line
with the presence of variation in latent fitness. Indeed, a
positive correlation between survival and reproduction is
observed in the snow vole data (correlation between observed
variation in survival and reproduction: Pearson’s correla-
tion, 0.097; 95% confidence interval [CI], —0.007 to 0.198).
For the correlation between the latent propensities to sur-
vive and to reproduce, see appendix G.

Simulation Parameters. The simulated mean survival prob-
ability from year f to year t + 1 was 0.4 for juveniles and
0.2 for adults (observed means in snow voles: 0.403 and
0.219, respectively). ARS, averaged over adults, was set to
3, 10, or 50 offspring. For the real snow vole population,
mean ARS values of 3 (resulting in a decreasing population
size) and 10 (i.e., increasing population size) are within the
range observed among years (noting that we include off-
spring of both sexes in ARS, while we analyze vital rates
for only one sex), while the value 50 aimed at confirming
the direction of the trend in test performance with respect
to mean ARS. The variance in individual quality, either on
the original scale or on a transformed scale, o} and o7, took
the values 0, 0.1, 0.5, 1, or 2. In simulations without fixed
heterogeneity, the m parameters took the values 0, 0.1, 0.2,
0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, or 1, while the ¢ parameters
took the values 0, 0.5, or 1. We had no a priori expectations
for the heterogeneity parameters (o3, 02, m, and ¢) in the
real snow vole population and thus selected the non-null
values in a range from small to large relative to the mean
survival and ARS.

Testing for Fixed Individual Heterogeneity

Neutral Simulations. NS were carried out following Tul-
japurkar et al. (2009), but we used the full stochastic model
proposed by Plard et al. (2012). Compared to the original
formulation of NS, the full stochastic model better isolates
dynamic heterogeneity by making future states indepen-
dent of the current state. Thereby, it removes the nonsto-
chastic component of transition probabilities and allows
testing whether “a given lifetime reproductive metric distri-
bution is generated only by dynamic heterogeneity” (Plard
et al. 2012, p. 325).
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Briefly, individual life histories starting at the juvenile
stage are simulated by producing a sequence of ARS values,
with the probability of each value of ARS corresponding
to its frequency in the focal data set. Mortality events, with
an age-specific probability estimated from the data set, are
mapped to these individual trajectories. Subsequently, prop-
erties of the resulting LRS distribution, as well as of the tran-
sition matrix between life stages, are compared between the
focal data set and that obtained using NS.

Here it is crucial to highlight some differences between the
NS and the way in which we simulated the data sets to which
they are applied. First and foremost, in NS, the propensity
to reproduce and to survive is identical for all individuals
and never depends on previous reproductive success. Sec-
ond, in our simulations, ARS follows a Poisson distribu-
tion—all positive integers are possible values—whereas in
NS, ARS are drawn from the ARS values observed in the
focal data set, which can follow any distribution and, for in-
stance, may have gaps, multiple modes, or extreme skew-
ness. Third, in our simulations, mean survival probability
is always 0.4 for juveniles and 0.2 for adults, while in NS,
these age-specific probabilities are the age-specific fre-
quencies of survival that are realized in the focal data set.
To sum up, our simulations are parametric and follow well-
defined distributions, while NS use empirical distributions
and thereby stick to the data.

To test for a deviation from the neutral expectation,
LRS distributions were compared using both Kolmogorov-
Smirnov tests (used in Steiner et al. 2010) and x* tests (used
in Plard et al. 2012). Additionally, we calculated mean LRS,
the variance in LRS, and the persistence of the reproductive
stage transition matrix and its entropy, following Plard et al.
(2012). Observed values greater than the 95% quantile—or
smaller than the 5% quantile, in the case of entropy, because
more fixed heterogeneity should decrease entropy (Tulja-
purkar et al. 2009)—of the neutral distribution were con-
sidered significantly different. The proportion of data sets
for which a test is significant in the absence of simulated fixed
heterogeneity gives the type I error rate, whereas the pro-
portion of data sets for which a given test is not significant
in the presence of simulated fixed heterogeneity gives the
type II error rate. The NS method is computationally inten-
sive, so to minimize computational time, we used the mini-
mal number of NS per simulated data set beyond which sta-
tistical power did not change (app. B).

Mixed Models. Generalized linear mixed models (GLMMs)
were used to estimate the variance in reproduction and sur-
vival attributable to fixed individual heterogeneity, as well as
to test for its statistical significance. Significance of the var-
iance components was assessed using likelihood ratio tests
(LRT; see, e.g., Pinheiro and Bates 2000; Crainiceanu and
Ruppert 2004), assuming that the statistic follows an even
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mixture of x7 and x5 (Self and Liang 1987). For survival, first
a logistic model not allowing for individual-level heteroge-
neity was fitted:

logit(¢:,) = ps + age; )

where p, denotes the intercept, and age,, denotes the effect
of age (juvenile or adult) of individual i at time ¢. In order to
model individual-level heterogeneity, this model was subse-
quently expanded with an individual random intercept:

logit(¢;,) = e + age,, + z,;5 with z,~N(0,63).  (6)

Model (6) estimated the individual-level heterogeneity
in survival probability, ¢;. Moreover, an LRT comparing
model (6) to model (5) tested for the significance of 4.

Similarly, for ARS, a first Poisson model without
individual-level heterogeneity was fitted:

log(p;) =, +age,,, (7)

where p, denotes the intercept, and age;, denotes the effect
of age. Subsequently, an individual random intercept was in-
cluded to model individual-level heterogeneity:

log(pi:) = p, +age,, +z,; with z,~N(0,57). (8)

Model (8) estimated the individual-level heterogeneity
in reproductive ability, ¢;. Moreover, an LRT comparing
model (7) to model (8) tested for the significance of ;.

In addition, for the analyses of data simulated by means
of a Markovian process not including any explicit fixed het-
erogeneity, the models (7) and (8) were refitted while add-
ing past reproductive success p;,—; as a covariate. The esti-
mated variance 6, and the LRT comparing these two new
models tests the significance of fixed heterogeneity while ac-
counting for a Markovian process.

Analysis of the Snow Vole Data Set

A snow vole population, located in the Swiss Alps near
Churwalden, at 2,000 m asl, has been monitored continu-
ously since 2006. Analyses presented here are based on
data collected until 2013, which are deposited in the Dryad
Digital Repository: http://dx.doi.org/10.5061/dryad.3cb61
(Bonnet and Postma 2015). Individual recapture probabil-
ity is virtually equal to 1.0, which facilitates the modeling
of survival. For more information on the study site and
data collection, see appendix E. NS were applied to the real
snow vole data set exactly in the same way as they were to
the simulated data sets, separately for males and females.
For MM, starting from the models for ARS and survival
used for the simulated data sets, we added sex and sex-
by-age interaction as additional fixed factors, as well as a
random effect accounting for variation among years and
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an observation-level random effect. The latter accounts for
overdispersion (see, e.g., Atkins et al. 2013) and quantifies
the overdispersion due to sources of heterogeneity not in-
cluded in the model. In a second step, models also includ-
ing ARS in the previous year were fitted in order to test for
the presence of fixed heterogeneity after accounting for
variation introduced by Markovian processes. Confidence
intervals for all parameters were computed through 1,000 para-
metric bootstraps, using the confint function in Ime4. In a fi-
nal step, the correlation between the propensity to survive
and to reproduce was estimated using a bivariate GLMM in
MCMCglmm (ver. 2.21; Hadfield 2010). This model is de-
tailed in appendix G.

Results

Mean ARS had no effect on the error rates of any test, so we
merged together the scenarios differing only by mean ARS.
Therefore, all error rates are estimated based on 3,000 tests
(1,000 data sets per scenario times three mean ARS values).

Type I Error Rates

In the absence of simulated individual fixed heterogeneity
and nonrandom transition probabilities between succes-
sive stages, all tests have a low rate of null-hypothesis re-
jection (table 1). This means that any discrepancy between
NS and MM must come from a difference in type II rather
than type I error rates.

Type 1I Error Rates

Simulations with Explicit Fixed Heterogeneity. Neutral simu-
lations. The Kolmogorov-Smirnov test comparing LRS distri-
butions is significant for only one simulated data set (per-
taining to the scenario {0} = 1,0, = 2,p = 50}) out of the
72,000 data sets with explicit fixed heterogeneity on the

transformed scale. For the parameter range simulated, this
test thus has effectively null power. Nevertheless, P values de-
crease with increasing o7 and o} (for {0, = 0,0} = 0,p.},
P =998, SE =0.001; for {0>=2,02 =2,p.}, P=.776,
SE = 0.032), showing that the extremely low power is not
the result of a complete calculation failure. Similar to the
results of Plard et al. (2012), the x’ test is more powerful
than the Kolmogorov-Smirnov test. Nevertheless, statisti-
cal power remains below 0.8 for moderately sized simu-
lated variances, and its maximal value is 0.89 for the highest
simulated variances (fig. 2A).

Tests based on mean LRS are nonsignificant for all data
sets and every scenario. The power of tests based on the
variance in LRS increases with increasing o7, while the power
peaks at intermediate values of simulated ¢} and decreases
again for higher o} (fig. 2B). The nonmonotonic shape
might be the result of the simultaneous increase in both
the real observed-expected difference and the sampling var-
iance: as the simulated variances go up, the LRS distribution
becomes wider and flatter. Keeping the number of NS con-
stant, this results in a less extensive sampling of the LRS dis-
tribution and a reduced power.

Tests based on the entropy of transition matrices dis-
play a pattern that is similar to that for x* tests, albeit with
lower statistical power, this time peaking at 0.57 (fig. 2C).
Tests based on the persistence of transition matrices have
high statistical power (=0.8) for o; > 1, while increases in o},
result only in a slight increase in statistical power (fig. 2D).
While they reach higher statistical power than the x” tests,
they have lower power than the x* at intermediate o7, values.

Mixed models. In contrast to NS, the power of the like-
lihood ratio test for ARS (LRT,) is almost perfect for o2 >
0.1. Even though fixed heterogeneity in reproduction and
survival are simulated independently, the power to detect
fixed heterogeneity in reproduction is marginally influenced
by the value of ¢} (fig. 2E and, more clearly, fig. D1E; figs. C1,
D1 available online). This is because a higher variance in

Table 1: Type I error of tests used in the mixed model (MM) and neutral simulation (NS) approaches when applied to data
sets without underlying fixed heterogeneity and with fully random transition probabilities

MM NS
LRT, LRT, KS X H P M 14
Estimate .042 .000 .000 .021 .018 .039 .000 .000
95% CI .039 to .054 0 to .001 0 to .001 .016 to .027 .014 to .023 .033 to .047 0 to .001 0 to .001

Note: Type I error rates are estimated as the proportion of simulated data sets, generated without fixed heterogeneity or Markovian process, for which a test
provides a P value below .05. Hence, each proportion is estimated from 3,000 tests. The 95% confidence intervals (CI) are Wilson score intervals. LRT, and
LRT, refer to the likelihood ratio tests of the variance associated with the individual random intercept in reproductive success and survival, respectively. KS
refers to a Kolmogorov-Smirnov test and x> to a x* test, both of which compare the lifetime reproductive success (LRS) distribution in a focal data set to the
distribution of LRS distributions obtained through NS. The four other tests are based on the distribution of values obtained by NS compared to the value in the
focal data set: mean (M) and variance (V) of the LRS distribution and entropy (H) and persistence (P) of the transition matrix between successive annual
reproductive successes.
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Figure 2: Null-hypothesis rejection rates for various methods testing for the presence of fixed heterogeneity as a function of the variance in
reproductive propensity, o3, and survival propensity, o;, when these variances are introduced on the transformed scales. The methods are a x*
test comparing the lifetime reproductive success (LRS) distribution in a focal data set to the distribution of LRS distributions obtained through
the neutral simulation (NS) approach (A); tests based on the proportion of values obtained by NS greater or equal to the value in the focal data
set for the variance in LRS (B), the entropy of the transition matrix between successive annual reproductive success (C), and the persistence
of this matrix (D); and a likelihood ratio test (LRT) for the significance of the individual random intercept in reproductive success (E). When
g, = o, = 0, the null-hypothesis rejection rates are equal to the type I error rates, which are expected to be 0.05 (light gray line). When o # 0
or o}, # 0, the null-hypothesis rejection rates give (1— type II error rate), that is, statistical power. The dark gray line indicates the 0.8 threshold.

A-D are related to NS; E is related to mixed models.

latent survival probability increases the proportion of indi-
viduals that reach the maximal age, which provides more
successive observations of reproduction and thereby increases
the power to detect variance in reproductive quality. Overall,
o, is slightly underestimated (6; = 0.9720;, adjusted R* =
0.9997).

The LRT, is never significant, even for o = 2. More-
over, the estimation of o} is always close to zero (average
of the median values 0.029) and does not increase with in-

creasing o (slope and SE: —0.0016 = 0.0006). The failure
of this model illustrates the intrinsic difficulty in estimating
random effects for binary traits, especially when there are
few repeated measurements per individual (e.g., Albert
and Anderson 1984; Hosmer et al. 2013, chapter 9), as is
the case in our short-lived simulated animals.

Simulations with a Markovian Process. Although data sets
simulated using a Markovian process do not contain explicit
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fixed heterogeneity, both MM and NS reject the null hy-
pothesis of an absence of fixed heterogeneity in most of
the cases (fig. 3).

The LRT,, testing for fixed heterogeneity in ARS (based
on MM), rejects the null hypothesis with a high probabil-
ity, except for the lowest values of ¢ and m (fig. 3E). When
m>0, current ARS is influenced by past ARS, which in
turn introduces variance in the propensity to reproduce.
When ¢>0, current survival probability is positively influ-
enced by current ARS. As a consequence, successful repro-
ducers live longer, resulting in more ARS values for these
individuals, which improves the ability of the MM to detect
individual-level variance. The LRT} is never significant for
¢ = 0 but rejects the null hypothesis at a high rate for ¢>
0.5, and this increases as m increases (fig. 3G). This pat-
tern was expected, as ¢ controls the correlation between sur-
vival and reproduction and indirectly makes the probabil-
ity to survive in the current time step dependent on the
probability to survive in the previous time step. Increasing
values of m further strengthen this correlation.

Both the Kolmogorov-Smirnov test on the LRS distribu-
tion and the test based on mean LRS are nonsignificant for
any data set with Markovian process. Furthermore, the x*
test rejects the null hypothesis with near certainty when
¢>0 and when ¢ = 0, with probabilities going from low to
moderate with increasing m (fig. 3A). Given the absence of
explicit fixed heterogeneity in these data, the x* test can
therefore be considered to have very high type I error rates
(but see the discussion). The tests based on the variance in
LRS, entropy, and persistence follow a similar pattern of
increasing probability of null-hypothesis rejection when
m and c¢ increase, but the test based on entropy does not
reach a probability higher than 0.65, while the two other
tests are close to 1 for the highest values of the parameters
(fig. 3B-3D).

Based on these findings, it could be argued that both
MM and Plard’s version of NS (Plard et al. 2012) have a
very high type I error rate when the transitions between
stages are structured. We examine this interpretation in
more detail in the discussion. However, the rejection rate
of the LRT, for fixed heterogeneity in ARS is drastically re-
duced by the inclusion of the past ARS (p;;—,) in the two
mixed models that are being compared, that is, those with
and without the individual random effect (cf. fig. 3E and
fig. 3F). The type I error rate is greater than the « thresh-
old of 5% only when both m>0.8 and ¢>0 (fig. 3F). More-
over, the estimates of the variance in reproductive propen-
sity are reduced by the inclusion of p;,—, in the models:
over all the scenarios, the mean is 62 = 0.004, SE = 0.002,
with a maximal estimate of 0.144, whereas without includ-
ing p;;-1, the mean is 0.050, SE = 0.008, and the maximum
is 0.459. The former estimate is closer to zero, that is, the
individual-level variance that is explicitly simulated.

Application to the Snow Vole Data Set

Neutral Simulations. For males, none of the six tests car-
ried out within the NS framework are significant. Neither
the LRS distribution nor the transition matrix between suc-
cessive values of ARS are distinguishable from those gener-
ated using NS (table 2). For females, out of the six tests,
two are significant: there is more persistence and more var-
iance than expected under neutrality, and the test on mean
LRS is close to being significant. However, the tests on the
complete LRS distribution (Kolmogorov-Smirnov and x?)
are far from significant (table 2). The latter is unsurprising,
as a graphical examination of the observed and the simu-
lated neutral LRS distribution show that the two distribu-
tions are almost indistinguishable (fig. 4). According to the
authors of the NS framework, the comparison of LRS dis-
tributions, either through a Kolmogorov-Smirnov test (in
Steiner and Tuljapurkar 2012) or a x> test (in Plard et al.
2012), is the gold standard when testing for the presence of
fixed heterogeneity with NS (U. K. Steiner, personal commu-
nication). Based on these NS results, there is thus no evidence
for fixed heterogeneity in either of the sexes, although the
results are more equivocal in females.

Mixed Models. The GLMM for survival identifies significant
between-years variance (5.622;95% CI, 1.133 to 13.158), but
estimates a latent individual-level variance of 0 (95% CI, 0
to 0.248; see table F1 for all the estimates of this model;
tables D1, F1, F2, G1, G2 available online).

The GLMM for ARS estimates variances among indi-
viduals (0.371; 95% CI, 0.151 to 0.475) as well as among
years (0.101; 95% CI, 0.026 to 0.452) that are different
from zero, and LRT's for both variances are highly signifi-
cant. The random effect accounting for overdispersion does
not significantly differ from zero, although its bootstrapped
confidence interval includes positive values (table F2 for
all the estimates of this model). When the individual ran-
dom effect is not included, this overdispersion variance is
highly significant, and the sum of squared Pearson residuals
divided by the estimated residual degrees of freedom is ap-
proximately 2, while it falls to 1 with individual as a ran-
dom effect. The estimation of residual degrees of freedom
in GLMMs is a complex issue (Pinheiro and Bates 2000),
but this approach seems to indicate that the overdisper-
sion in the distribution is largely due to differences between
individuals.

Excluding individuals reproducing for the first time, we
fitted a GLMM that includes the previous reproductive
success ARS,_, and sex as fixed effects and year as the only
random effect. This model indicates a significant positive
relationship between successive values of ARS (slope =
0.0949, SE = 0.0213, P = 8 x 107%). Nevertheless, adding
individual as a random effect greatly improved the fit of
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the model (AAIC [Akaike information criterion] = 87;
LRT: P<107"), providing evidence for the existence of sig-
nificant individual-level variance (63,4 = 0.341, bootstrapped
95% CI, 0.189 to 0.453). Including ARS,_, had little effect
on the estimate of 62, (see table F2), but now ARS, | no
longer reached significance (slope = 0.0210, SE = 0.0275,
P = .445).

Finally, the latent correlation between the propensities
to survive and to reproduce was estimated as 0.32 (95% CI,
—0.68 to 0.97) and appears in the best model selected by
deviance information criterion (DIC; see app. G).

Discussion
Overview

Based on extensive simulations, we have shown that in the
presence of fixed heterogeneity, NS have much less statis-
tical power than MM, even when the model simulating the
data does not match the structure assumed by the MM. In
particular, the Kolmogorov-Smirnov test, advocated in the
earlier version of NS, has virtually no statistical power. In
contrast, MM have low type I error rates and are not mis-
led by the presence of dynamic heterogeneity, which in all
data sets is nonzero if measured as entropy (Tuljapurkar
et al. 2009). This finding directly contradicts the claim “that
random effect models will always detect unobservable fixed
effects” (Steiner et al. 2010, p. 442). Second, in the absence
of fixed heterogeneity, Markovian transitions between suc-
cessive reproductive success and survival probabilities can
induce high type I error rates, both in MM and NS, sensu
Plard et al. (2012). However, inclusion of previous repro-
ductive success in the MM for reproduction substantially
reduces these errors. Third, when applied to a real data set
for a wild population of snow voles, NS only detect ambig-
uous deviations from neutrality and only for females. More-
over, the main tests of the framework, based on the total dis-
tribution of LRS, fail to reject the null hypothesis in both
sexes. In striking contrast, MM show strong evidence for in-
dividual latent variance in reproductive success, even when a
Markovian process is accounted for. In addition, MM give
some indication of the presence of individual latent variance
in survival and of a positive correlation between survival and
reproduction. However, the latter two parameters are esti-
mated with substantial uncertainty.

Use of Simulations

Testing methods on simulated data can be difficult be-
cause the specific simulation process used can differently
match the assumptions and structures of the different meth-
ods. We tried to overcome this issue by using three different
simulation models. Moreover, the rejection rates of MM and

Successful by Chance? 69

NS observed in our simulations are similar to those observed
when the methods are applied to real data. Indeed, in the
present work, we applied both methods to a snow vole data
set and found that the MM approach detected individual
fixed heterogeneity, while the NS approach did not detect a
significant deviation from the neutral expectation. This was
also the case for the other data sets to which both methods
were applied (MM by Cam et al. 2013; NS by Steiner et al.
2010). On the whole, we are aware of only a single case in
which NS led to the rejection of neutrality (Plard et al.
2012), whereas MM commonly find evidence for significant
individual fixed heterogeneity, either by estimation of positive
variance components, model selection (Cam et al. 2013), or
posterior predictive checks (Chambert et al. 2014). Although
there is some possibility of publication bias, this pattern is
consistent with our power analysis.

Low Power of Neutral Simulations

The low power of NS probably stems from the fact that
they aggregate data on vital rates and that they do so twice,
first over the lifetime of individuals and then when they ag-
gregate individuals into population-level statistics. Thereby,
they first discard the repeatability of individuals, which has
been shown to blur heritable differences among individ-
uals (Vaupel 1988). Second, population-level statistics can
be produced by an infinite number of different mixtures
of individual types (e.g., a mean probability of 0.5 can be
the result of a population consisting only of individuals with
a latent probability of 0.5 or from a uniform distribution of
individual probabilities between 0 and 1). Therefore, some
patterns of among-individual differences are indistinguish-
able at the population level. Individual-level data are natu-
rally better at identifying the causes of variation at that level
(Clutton-Brock and Sheldon 2010), and the ability to use
nonaggregated data, for instance, longitudinal information
on marked individuals, further increases this power (Brooks
etal. 2013). While a method such as Plard’s NS could be valu-
able in the absence of such data, alternative methods making
use of nonaggregated information, such as MM, should be
preferred whenever possible.

Importantly, within a strict null-hypothesis testing frame-
work, the failure to reject a null hypothesis cannot be inter-
preted as a proof of the null hypothesis. The absence of sig-
nificance in most implementations of the NS (Tuljapurkar
et al. 2009; Steiner et al. 2010; Orzack et al. 2011; Plard
et al. 2012) is therefore not informative with respect to the
presence and the biological significance of fixed heterogene-
ity. The null-hypothesis testing framework can partially be
relaxed by an a priori power analysis. Although comparisons
of simulated data sets with and without heterogeneity were
indeed presented in Steiner and Tuljapurkar (2012), fixed
heterogeneity (assumed to be genetic) was modeled as two
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Figure 3: Null-hypothesis rejection rates for various methods testing for the presence of fixed heterogeneity, when none is explicitly sim-
ulated, depending on the parameter m, controlling the structure of transitions between successive annual reproductive successes, and on the
parameter ¢, controlling the dependency between survival probability and reproductive success (for details, see the methods section “Sim-
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Table 2: Outcomes of the various tests within the neutral simulation (NS) framework when applied to the real snow vole data set

for males and females separately

KS ¥ j2
Test D j2 ¥ daf P H P v M
Males 025 969 8.33 15 909 629 646 395 378
Females 030 902 5.50 8 70 624 035 031 057

Note: KS refers to the Kolmogorov-Smirnov test and x* to the x* test, comparing the lifetime reproductive success (LRS) distribution in a focal data set to the

distribution of LRS distributions obtained through NS. The four other tests are based on the proportion of values obtained by NS greater than the value in the

focal data set for the mean (M) and variance (V') of the LRS distribution and for the entropy (H) and persistence (P) of the transition matrix between successive

annual reproductive success. The P values <.05 are shown in boldface.

groups of homogeneous individuals, which, except for clonal
organisms, is biologically unrealistic. In addition, the ab-
sence of significant differences between the data sets with
and without fixed heterogeneity was not interpreted as a
sign of a lack of statistical power but as evidence that fixed
heterogeneity has little effect on LRS distributions.

Effect of Markovian Transitions

When no fixed heterogeneity was explicitly simulated, both
MM and NS rejected the null hypothesis that fixed hetero-
geneity is absent. This was to be expected for MM, given
that Markovian transitions mimic individual-level variance,
and MM do not model population-level transition probabil-
ities. It is more surprising that NS also had a high rate of
false positives. However, here we used the full random model
reformulation of NS (Plard et al. 2012) and not the full dy-
namic model (Tuljapurkar et al. 2009). The latter simulates
individual trajectories using a Markovian process, similar
to the way data sets were simulated here, while the former
simulates individual trajectories without taking into account
the previous state. Hence, full dynamic NS would not reject
the null hypothesis, and one could consider this, in this case,
to be correct. However, as latent individual quality will nec-
essarily produce a pattern that is consistent with a Markov-
ian process, this formulation does not allow for a complete
separation of fixed and dynamic heterogeneity (Plard et al.
2012). Observing a Markovian process, therefore, is not in
itself informative with respect to the mechanisms shaping
life histories. Hence, although they have a low type I error
rate, full dynamic NS always have low statistical power.

We acknowledge that a Markovian process that is not due
to fixed differences between individuals does mimic fixed
heterogeneity and thereby can bias estimates of between-
individual variance based on full random NS and on MM.
Therefore, a naive MM detects individual-level heteroge-
neity, irrespective of whether it is due to a population-level
Markovian process or to individual-level differences. How-
ever, the type I error of MM can be substantially reduced
by including previous reproductive success in the model
(Rotella 2008; Cam et al. 2013). Although this is not a univer-
sal solution that accounts for all confounding factors, it
highlights the flexibility of the MM framework, which allows
for the incorporation of any factor that is perceived as poten-
tially confounding based on knowledge of the study system.

Genetic Variation as a Source of Fixed Heterogeneity

In cases where the evidence for the presence of fixed het-
erogeneity is equivocal, for instance, because the effects of
Markovian processes and individual-level fixed differences
are confounded, the use of genetic information and quanti-
tative genetic methods has the potential to tease apart latent
genetic quality from other sources of performance persis-
tence, including stochastic transitions. Indeed, although
other sources of variation may also generate fixed heteroge-
neity, the existence of significant additive genetic variation
implies significant fixed heterogeneity, by definition deter-
mined at fertilization. Interestingly, estimates of additive ge-
netic variation for fitness components are often large, even
in small populations (for reviews, see Mousseau and Roff
1987; Postma 2014). As a matter of fact, when standardized

ulations with a Markovian Process”). The methods are a x> test comparing the lifetime reproductive success (LRS) distribution in a focal data
set to the distribution of LRS distributions obtained through the neutral simulation (NS) approach (A); tests based on the proportion of
values obtained by NS greater or equal to the value in the focal data set for the variance in LRS (B), the entropy of the transition matrix
between successive annual reproductive success (C), and the persistence of this matrix (D); a likelihood ratio test (LRT) for the significance
of the individual random intercept in reproductive success, using models that do not account for a Markovian process (E) or do account for a
Markovian process (F); and an LRT for the significance of the individual random intercept in survival (G). For survival, we did not try to
account for the Markovian process. Assuming that the simulated Markovian process cannot be related to fixed heterogeneity, the null-
hypothesis rejection rates represent type I error rates for all values of the ¢ and m parameters. A-D are related to the NS framework; E-G are
related to the mixed models framework.
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Figure 4: Distribution of lifetime reproductive success in the real snow
vole data set, observed (dark bars) and simulated through 1,000 neu-
tral simulations (light bars, with black error bars showing *standard
deviation) for females (A) and males (B).

by the mean (i.e., evolvability) rather than the variance (i.e.,
heritability), fitness components appear to have higher addi-
tive genetic variation than other types of traits (Hansen et al.
2011; Postma 2014). In addition to our findings, this pro-
vides further support for fixed heterogeneity being more
common than suggested by NS.

Interpretation of the Snow Vole Results

Because they are similar in structure, our simulated data
sets can shed light on the results from the analysis of the real
snow vole data set. For example, it is unsurprising that the
MM fails to detect individual heterogeneity in snow vole

survival probabilities. The LRT, has no statistical power
for simulated data sets with simulated o} <2, while confi-
dence and credibility intervals indicate that the possible
values of o} lay between 0 and 1 at most (tables F1, G2).
Unlike heterogeneity in individual survival probability, het-
erogeneity in individual reproductive success is easily de-
tected and quantified by MM applied to simulated data sets
(fig. 2E). Accordingly, the analysis of the real data set iden-
tifies an individual variance in the propensity to reproduce
that is significantly different from zero and is estimated to
be more than three times larger than the variance among
years. Finally, given the estimate of the variance o7, we can
get an estimate of the statistical power of the other tests to
detect fixed heterogeneity in the real snow vole data set; a
significant test seems possible for the x> test (fig. 2A) but
quite unlikely for the test based on entropy (fig. 2C).

A positive correlation between individual-level variation
in reproduction and survival would provide further support
for fixed heterogeneity. However, as mentioned above, the
estimation of individual-level variance in survival is diffi-
cult because this is a binary trait and because, due to their
short life span, there are few observations per individual.
Hence, there is a lot of uncertainty in the estimation of this
correlation parameter. Nevertheless, the most likely values
are positive (app. G).

Fixed Heterogeneity and the Concept of Fitness

The debate surrounding the biological significance of fixed
heterogeneity appears to stem at least partly from different
concepts of fitness. On the one hand, proponents of the
neutral theory of life histories consider fitness to be a prop-
erty of a category of individuals and consider variation in
reproductive success among individuals to be mostly due
to dynamic heterogeneity, rather than due to variation in
latent individual properties (Steiner and Tuljapurkar 2012).
On the other hand, researchers in the field of evolutionary
ecology often see fitness as a latent property of individuals
(Cam and Monnat 2000), that is, an expected value defined
at the individual level that cannot be measured directly
(Brandon and Beatty 1984; Price 1996; Krimbas 2004). As
the mean value of a group is also the expected value of an
individual belonging to this group, the two views are not
fundamentally different. In sexual organisms, however, each
individual is unique, which makes it difficult to assign it to
a hypothetical group made of identical individuals. If sto-
chastic variation underlies most of the realized reproductive
success and there are no fitness differences between individ-
uals, as adherents of the neutral theory of life histories advo-
cate, then it is useless to define fitness at the individual level.
However, if there exists significant fixed heterogeneity, in-
dividual performances carry some information about their
latent properties, for example, due to their genetic makeup.
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In the presence of fixed heterogeneity, it therefore seems
useful to use an individual-level definition of fitness, differ-
ing from both group-level fitness and realized reproductive
success.

Conclusions

Using extensive simulations, we have demonstrated that NS
are uninformative with respect to the biological significance
of fixed heterogeneity. Based on the work of Plard et al.
(2012) and our power analysis, we conclude that the obser-
vation of a Markovian process in stage-transition proba-
bilities does in itself not provide any biological insights.
Within the NS framework, the full random model (Plard
etal. 2012) should be preferred over the full dynamic model
(Tuljapurkar et al. 2009), and the x* test should be preferred
over the Kolmogorov-Smirnov test. In addition, any use of
NS should be complemented by an a priori power analysis
or otherwise be restricted to a strict null-hypothesis test-
ing framework, where failure to reject the null hypothesis
does not allow any conclusions regarding the null hypoth-
esis being true and/or the alternative hypothesis being false.
However, even when these improvements are included in
the NS framework, we recommend that its use be restricted
to data sets where individuals are not identified.

Instead, we show that MM are more powerful but not
more susceptible to type I error. Although MM can be mis-
lead by confounding factors, given a good knowledge of
the biological system, it is possible to account for these
confounding factors, in which case MM have a very low
type I error rate.

Finally, the confrontation of our power analysis with the
analysis of the real snow vole data set supports the presence
of fixed heterogeneity in fitness components in this popula-
tion. Further research is being carried out to identify what
traits can be related to this latent heterogeneity and how
genetic and maternal effects shape these differences.

On the whole, this work supports the idea that fixed het-
erogeneity is more common than suggested by the studies
based on NS.
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