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Abstract

Temporal fluctuations in the strength and direction of selection are often

proposed as a mechanism that slows down evolution, both over geological

and contemporary timescales. Both the prevalence of fluctuating selection

and its relevance for evolutionary dynamics remain poorly understood how-

ever, especially on contemporary timescales: unbiased empirical estimates of

variation in selection are scarce, and the question of how much of the varia-

tion in selection translates into variation in genetic change has largely been

ignored. Using long-term individual-based data for a wild rodent population,

we quantify the magnitude of fluctuating selection on body size. Subse-

quently, we estimate the evolutionary dynamics of size and test for a link

between fluctuating selection and evolution. We show that, over the past

11 years, phenotypic selection on body size has fluctuated significantly.

However, the strength and direction of genetic change have remained lar-

gely constant over the study period; that is, the rate of genetic change was

similar in years where selection favoured heavier vs. lighter individuals. This

result suggests that over shorter timescales, fluctuating selection does not

necessarily translate into fluctuating evolution. Importantly however, indi-

vidual-based simulations show that the correlation between fluctuating

selection and fluctuating evolution can be obscured by the effect of drift,

and that substantially more data are required for a precise and accurate esti-

mate of this correlation. We identify new challenges in measuring the cou-

pling between selection and evolution, and provide methods and guidelines

to overcome them.

Introduction

Selection, the causal covariation between trait values

and fitness, shapes biodiversity in time and space and

explains the general match between organisms and

their environment (Darwin, 1859; Endler, 1986). Link-

ing the sources of natural and sexual selection to the

dynamics of evolution (defined here as a change in

mean breeding value for the trait of interest) has been

a major goal of evolutionary biology during the last

century (e.g. Fisher, 1958), but for most of the 20th

century progress has been hampered by the lack of a

unified framework to quantify selection (Wade, 2006).

This changed with the development of regression-based

methods to measure the strength and direction of selec-

tion (Lande, 1979; Lande & Arnold, 1983), which have

enabled the estimation of selection gradients in a large

variety of traits and biological systems (Kingsolver et al.,

2001; Stinchcombe et al., 2008). This bonanza of esti-

mates has shown that directional selection is stronger

and more common than stabilizing selection, for both

morphological and life-history traits (Kingsolver et al.,

2001; Hereford et al., 2004; Hendry, 2017). At first

sight, this pattern is contrary to expectations (King-

solver & Diamond, 2011): as most traits are heritable

(Mousseau & Roff, 1987; Postma, 2014), they are
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predicted to evolve towards their fitness optimum, with

directional selection progressively being replaced by sta-

bilizing selection. In practice, however, most traits

evolve only very slowly and within a limited pheno-

typic range (Hendry & Kinnison, 1999; Meril€a et al.,

2001; Brookfield, 2016).

One explanation for this paradox is that fitness land-

scapes are not constant over time, and populations are

evolving towards a continuously changing fitness opti-

mum (Fisher & Ford, 1947; Lande, 1976). Whereas at

any point in time directional selection may be strong,

average selection gradients may be weaker, and if selec-

tion fluctuates not only in strength but also in direction,

average selection may even be zero (Fig. 1a–c). Fluctuat-
ing selection may thus slow down longer-term evolu-

tionary adaptation, or even bring it to a halt (Jones et al.,

2004; Estes & Arnold, 2007), and it thereby constitutes

an appealing explanation for the commonly observed

lack of evolutionary change, that is evolutionary stasis,

as well as for the commonness of directional selection

(Meril€a et al., 2001; Robinson et al., 2008; Bell, 2010).

However, although fluctuating selection as an explana-

tion for ‘macro-evolutionary’ stasis is gaining theoretical

and empirical support (Estes & Arnold, 2007; Uyeda

et al., 2011; Voje et al., 2015), our understanding of the

importance of fluctuations in selection in shaping the

evolutionary dynamics of natural populations on a much

shorter timescale, for example from one generation to

the next, is still limited. A few robust examples of tem-

poral variation in selection exist (e.g. Grant & Grant,

2002; Husby et al., 2011; Bergland et al., 2014; Milesi

et al., 2016), but an assessment of the general micro-evo-

lutionary relevance of fluctuating selection is hampered

by the lack of a clear answer to two questions: (i) Does

phenotypic selection commonly fluctuate, in strength

and/or direction? (Hendry, 2017, pp. 47–51) (ii) And if it

does, do these fluctuations translate into fluctuations, in

speed and/or direction, of genetic change?

The first question seemingly received a positive

answer with the publication of a synthetic review of

Fig. 1 Evolutionary change under constant and fluctuating selection regimes. In (a), selection is constant across years. Following the

breeder’s equation, the change in breeding values (i.e. genetic differential or the response to selection) is equal to the product of the

selection differential and the narrow-sense heritability, which is here set to 0.3. The resultant cumulative response to selection, that is the

evolutionary trajectory, is described by a straight line. In (b), selection fluctuates but does not reverse, and mean selection and the rate of

evolution are only slightly reduced compared to (a). In (c), selection fluctuates and reverses, resulting in fluctuating and reversing

evolution, and thereby evolutionary stasis over the time frame considered. In (d), selection fluctuates and reverts as in (c), but selection is

partly noncausal and mediated by an unobserved environmental factor (i.e. a key assumption of the breeder’s equation is violated). As a

consequence, selection and evolution are uncoupled, and despite fluctuating selection, the rate of evolution is similar to (a).
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temporal replicates of selection from 89 studies, which

concluded that phenotypic selection does indeed vary

and reverse its direction among years (Siepielski et al.,

2009). However, Morrissey & Hadfield (2012) showed

that most of these fluctuations can be ascribed to sam-

pling variation, that is, the stochasticity that causes the

realized value of a parameter to differ from the parame-

ter of the data-generating process in finite populations.

When sampling variation is accounted for, directional

selection is in fact remarkably constant over time, both

in magnitude and direction: instead of estimating the

variance of the distribution of temporal estimates of

selection, as in Siepielski et al. (2009), tests for fluctuat-

ing selection must estimate the variance of the tempo-

ral distribution of selection (Morrissey & Hadfield,

2012). As of yet, Chevin et al. (2015) are among the

few to have done this: using random regression mixed

models which explicitly estimate the variance in selec-

tion gradients, they found that phenotypic selection on

laying date fluctuated over a short time period in a

population of great tits (Parus major Linnaeus, 1758).

The generality of this finding, however, needs to be

confirmed across a wider range of species, populations

and traits, using the same, statistically robust approach.

In addition to showing statistically significant varia-

tion in selection, two more points must be addressed to

assess the evolutionary relevance of fluctuating selec-

tion. First, the precise pattern of fluctuation matters:

even in the presence of fluctuating selection, evolution

will only come to a halt if the direction of selection

changes regularly and the mean selection differential

equals zero (Blanckenhorn, 2000; Hunt et al., 2004;

Morrissey & Hadfield, 2012; see Fig. 1b). Second, phe-

notypic selection, when defined as a nonzero pheno-

typic covariance between a trait and relative fitness,

does not necessarily lead to an evolutionary response

(see Fig. 1d). The breeder’s equation assumes that fit-

ness covaries with phenotypic variation blindly, and

does not distinguish between whether this phenotypic

variation is the result of genetic or nongenetic variation

(Rausher, 1992). When this assumption is violated and

apparent selection is disproportionately dominated by

an environmental covariance between the trait of inter-

est and fitness, estimates of phenotypic selection pro-

vide a poor predictor of genetic change (Price & Liou,

1989; Rausher, 1992; Morrissey et al., 2010; Bonnet

et al., 2017). For instance, random infection of some

individuals by a parasite may simultaneously drive

among-individual variation in mass and variation in fit-

ness, generating a covariation between mass and fit-

ness, without mass causally affecting fitness.

Whereas the latter is one of the general explanations

for apparent evolutionary stasis, it is particularly rele-

vant within the context of fluctuating selection: as fluc-

tuating selection is often thought to be driven by

environmental fluctuations (Bell, 2010; Chevin & Hal-

ler, 2014), these may disproportionately shape

(fluctuations in) the environmental component of

selection. Fluctuations in the additive genetic covari-

ance between the trait and fitness, that is in fluctuating

evolution (Robertson, 1966; Price, 1970; Morrissey

et al., 2012), can result from fluctuating selection only

if the fluctuations involve the causal effects of the focal

trait on fitness.

Here we take advantage of the eleven-year-long

monitoring of a population of snow voles (Chionomys

nivalis Martins, 1842) to (i) quantify fluctuating selec-

tion on body size, (ii) describe the temporal dynamics

of evolution in size and (iii) quantify the relationship

between fluctuating selection and evolution. To this

end, we first estimate directional selection on a year-to-

year basis to quantify the variation in selection esti-

mates. We then explicitly model these fluctuations of

directional selection within a mixed model to account

for sampling variance. Based on the sign of annual

selection estimates, as well as on the ratio of the vari-

ance in selection over the mean strength of selection,

we also assess the probability of selection reversal.

These analyses are performed for total selection, as well

as for fertility and viability selection separately. Second,

we use a quantitative genetic framework to describe

the general pattern of evolution over the study period

and estimate the rate of evolution of size on a year-to-

year basis. Third, we combine analyses of selection and

estimates of evolutionary change to assess the coupling

between variation in the strength and sign of selection

and evolution. Finally, we perform a series of individ-

ual-based simulations to infer the statistical power of

our test for fluctuating selection and its evolutionary

relevance, which is crucial when it comes to interpret-

ing any negative results.

Materials and methods

Study population

From 2006 to 2016, a wild population of snow voles

(Chionomys nivalis Martins, 1842) has been monitored

intensively. This population, which consists of 80–230
individuals (Table 1), is located in the Swiss Alps, near

Chur (N46°480, E9°340; 2030 m.a.s.l.). The study area

consists of 5 ha of scree with sparse vegetation, sur-

rounded by meadows, forest and a steep cliff. Because

the snow vole shows an overwhelming preference for

rocky environments (Janeau & Aulagnier, 1997;

Luque-larena et al., 2002), the monitored population is

ecologically fairly isolated. Nevertheless, it receives on

average 8.6 immigrants per year (Table 1, see also

Garc�ıa-Navas et al., 2015).
Snow voles are live-trapped during two to five trap-

ping sessions taking place between late May and early

October. To this end, the study area is overlaid with a

10 9 10 m grid consisting of a total of 559 cells with

stable geographic coordinates. A trapping session
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consists of four trapping nights, necessary to cover all

four quarters of the study area. During each trapping

session, a Longworth trap (catch-and-release trap, Pen-

lon Ltd, Oxford, UK) filled with hay and baited with

apple, hamster food and peanut butter is placed in

every cell. Individuals captured for the first time are

ear-clipped (2 mm diameter, thumb type punch, Har-

vard Apparatus, Holliston, MA, USA) and individually

marked with a subcutaneous PIT tag (ISO transponder,

Tierchip Dasmann, Tecklenburg, Germany). Ear clips

are preserved in 95% ethanol + 5% TE. For each cap-

ture, we record individual identity, geographic coordi-

nates, body mass, body length, tail length, sex and age.

Ear clips are stored at �20 °C until DNA extraction.

All individuals are genotyped for 18 autosomal

microsatellites using snow vole-specific primers (Wan-

deler et al., 2008; Garc�ıa-Navas et al., 2015). In addi-

tion, the sex of all individuals is confirmed by

sequencing the Sry locus (Gubbay et al., 1990; Wan-

deler et al., 2008). Finally, the mitochondrial control

region is sequenced, and all males are genotyped for

one Y-linked microsatellite and three Y-linked inser-

tion-deletions (Wandeler & Camenisch, 2011). Based

on the autosomal microsatellite genotypes, we recon-

struct the pedigree of the population using the maxi-

mum likelihood-based program COLONY (Wang, 2004;

Jones & Wang, 2010) and the Bayesian R package Mas-

terBayes (Hadfield et al., 2006; R Core Team, 2015).

The pedigree is then checked for consistency using the

Y-linked markers and the mitochondrial haplotypes.

This procedure allows the identification of most of the

parental links (91%) as well as the identification of

likely immigrants (individuals first captured as adults

and with two unknown parents). This well-resolved

pedigree is used to define annual and lifetime reproduc-

tive success, as well as to estimate the relatedness

among all pairs of individuals.

A mark-recapture analysis has shown that between-

session recapture probabilities are very high (adults:

92.4% � 1.1; juveniles: 81.1% � 3.0). Therefore, the

between-year recapture probability is effectively 1, and

the noncapture of an individual in a given year can be

directly equated with death or permanent emigration

without the need for mark-recapture modelling.

Fitness measures

We considered three measures of fitness: (i) survival

from 1 year to the next, /i,t, based on whether an indi-

vidual i observed in year t is observed again in year

t + 1 (/i,t = 1) or not (/i,t = 0); (ii) annual reproductive

success, qi,t+1, the number of juveniles born from i dur-

ing the year t + 1, that is, after i survives to the next

year (but irrespective of juvenile survival); (iii) an

annualized measure of overall fitness, similar to that

used in Qvarnstr€om et al. (2006), Fi,t = 2/i,t+qi,t+1. Fi,t is
an appropriate measure of fitness in the context of

studying evolution with overlapping generations

because it captures the production of all the individuals

present in year t + 1 by all the individuals present in

year t (Fig. 2). In our measure of total fitness (Fi,t),

Table 1 Number of phenotyped individuals, survivors to the next year and number of immigrants.

Year 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

Phenotyped individuals 183 193 139 163 131 56 66 116 130 118 128

Number of adults 64 66 62 46 69 36 32 40 52 59 65

Number of juveniles 112 126 75 103 59 15 34 75 77 55 63

Number of survivors 43 39 33 48 16 8 21 38 31 20 –

Number of immigrants 52 13 13 14 3 9 9 8 11 5 1

The number of phenotyped adults and juveniles includes all individuals with at least one body mass index measurement in a given year,

that is with a measurement of both body mass and body length. This represents the sample size for the selection analyses based on total fit-

ness (F) and viability (/). The number of survivors to the next year represents the sample size for the selection analysis based on fertility

(q) and is unknown for 2016. Immigrants are individuals with unknown parents and are counted only in the first year they appeared in

the population. In 2006, the number of immigrants represents the size of the base population, whereas in other years the number of immi-

grants represents individuals immigrating in the population.

Fig. 2 Schematic representation of the snow vole life cycle, and of

our definition of reproduction, survival and evolution. We are

interested in predicting Evolutiont?t+1, the genetic difference (i.e.

the difference in mean breeding value) between all individuals

present in year t [adults (At) and juveniles (Jt)] and all individuals

present in year t + 1 (At+1 and Jt+1). This genetic change is a

response to viability selection from year t to year t + 1 (/t?t+1)

and to fertility selection during year t + 1 (qt?t+1). Three years and

two transitions are depicted. The colour (dark blue or light blue)

shows which fitness components predict which evolutionary

change.
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survival is multiplied by two because an individual is

twice as related with itself as with its offspring. The

alternative of dividing the number of offspring by two

would result in noninteger numbers, which cannot be

fitted using standard generalized linear models.

Note that the distribution of this annualized measure

of fitness F will never exactly comply with a Poisson

distribution because 1 is an impossible value (an indi-

vidual must survive, thus obtaining two fitness points,

before it can reproduce). However, computer simula-

tions (described in Appendix S1-1) confirm that selec-

tion measured as the covariance between a trait and F

perfectly predicts genetic change from t to t + 1 when

the heritability of the trait equals one (here and in the

rest of the manuscript, heritability refers to the additive

genetic heritability, i.e. narrow-sense heritability).

Moreover, with a trait heritability smaller than one, the

slope of evolution on selection was equal to the simu-

lated heritability (see Appendix S1-1), as predicted by

the breeder’s equation.

Measuring body size

Although our aim is to gain a better understanding of

the evolutionary relevance of fluctuating selection on

body size, the use of absolute body mass measure-

ments is complicated by the fact that juvenile age is

unknown. As we have shown previously, not correct-

ing for this age-related variation in body mass provides

a misleading description of the causal relationship

between body size and fitness, and it provides a poor

prediction of adaptive evolution in this system (Bonnet

et al., 2017).

Rather than using growth curves to account for age-

related variation in body mass (see Bonnet et al., 2017),

here we chose to instead divide body mass by body

length to obtain a body mass index (BMI). We used

mass over length rather than length squared, a more

common BMI, because the distribution of the former

was close to a Gaussian distribution, whereas the latter

was right-skewed. BMI is more repeatable than body

mass in juveniles (0.73 vs. 0.62). To obtain standard-

ized selection gradients, we standardized BMI across all

years by subtracting the mean and dividing by its stan-

dard deviation. An overview of the sample sizes is

given in Table 1 Data available from the Dryad Digital

Repository: https://doi.org/10.5061/dryad.6767m (Bon-

net & Postma, 2018).

Selection analysis

Selection was estimated with a series of generalized lin-

ear models (GLMs) and generalized linear mixed mod-

els (GLMMs), regressing fitness measures on BMI.

Mixed models were fitted with the R-package

MCMCglmm (Hadfield, 2010). This package accounts

for overdispersion when modelling Poisson traits.

Using the annualized measure of overall fitness, Fi,t,

we first estimated selection on a year-by-year basis

using a Poisson GLM with a log link, where the

expected fitness of individual i at time t is predicted

from:

logðFi;tÞ ¼ lF;t þ bF;a;tai;t þ bF;s;tsi þ bF;as;tasi;t þ ðbF;z;tÞzi;t ;
(1)

where ai,t is the age (juvenile or adult) of individual i

at year t, si is the sex of i, zi,t is the phenotype (BMI) of

i at t, lF,t is the intercept of the regression, bF,a,t is the

effect of age, bF,s,t is the effect of sex, bF,as,t is the inter-

action sex-by-age, and bF,z,t is the strength of selection

on BMI. Because we used a log link, bF,z,t is a selection

gradient sensu Lande & Arnold (1983; Smouse et al.,

1999; Firth et al., 2015).

The standard deviation in the yearly estimates of

selection (SD ðb̂F;z;tÞ) gives a first idea about the tempo-

ral dynamic of selection, but as it includes sampling

variance, it will always overestimate the real variation

in selection (Morrissey & Hadfield, 2012).

Second, we estimated overall selection by fitting a

Poisson GLM to pooled data from all the years, without

taking into account temporal variation:

logðFi;tÞ ¼ lF þ bF;aai;t þ bF;ssi þ bF;asasi;t þ bF;zzi;t: (2)

Third, we directly estimated variation in selection by

fitting a random regression to the full data set. Thus,

we expanded model (2) to a Poisson GLMM by includ-

ing a random intercept and a random slope for fitness

as a function of BMI:

logðFi;tÞ ¼ lF0 þ lF;t þ b0F;aai;t þ b0F;ssi þ b0F;asasit þ ðb0F;z
þ fF;tÞzi;t ;

(3)

where b0F;z is the median selection estimate, lF,t is the

random deviation of the global intercept (lF0) in year t,

and fF,t is the deviation of selection (i.e. the slope) in

year t. The random effects lF,t and fF are assumed to be

multivariate normal with variances r2F;l and r2F;f, and a

covariance rF,(l,f). The main parameter of interest in

this equation is r2F;f, which captures temporal variation

in selection and is free of sampling variance (Chevin

et al., 2015).

The median selection gradient estimate (b0F;z) from

model (3) differs from the estimate across all years (bF,
z) from model (2) if the estimate of r2F;f is different from
0 and data are not perfectly balanced among years.

Whereas the latter, bF,z, is the best estimate of the over-

all selection, the former, b0F;z , is the selection occurring

in a ‘standard’ year. The ratio of rF;f=
��b0F;z

�� provides an

indication of the likelihood of a reversal in the direction

of selection. Assuming that the annual selection
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gradients follow a Gaussian distribution (as the random

regression assumes), this ratio is similar to an inverse

Z-value. Values around 0.6 indicate rare reversals (5%

of the time), and values above 2 indicate common

reversals (more than 31% of the time).

We repeated these analyses for annual reproductive

success (q), again using a Poisson GLMM, and for over-

winter survival (/), using a logistic regression (i.e. a

categorical GLMM with two levels). As was the case for

F, because we use a log link, estimates of the strength

of selection using q are selection gradients sensu Lande

& Arnold (1983; Smouse et al., 1999; Firth et al., 2015).

Although this is not the case for /, the sign and

strength of estimates of selection are still interpretable

qualitatively. For Fig. 3c, we back-transformed the

selection gradients to the scale of the data, following

Janzen & Stern (1998). We did not back-transformation

the selection parameters in Table 2 because it is unclear

how to convert the variance in the slope to the scale of

the data. The main parameters of interest, the variances

in the slope of selection, are written r2/;f and r2q;f, for

viability and fertility, respectively.

Finally, we refitted model (3) with BMI standardized

within years (subtracting the average and dividing by

the standard deviation for each year), to evaluate

whether the variation in selection comes from changes

in phenotypic variance (resulting in a lower estimate of

rF,f), or rather from a moving fitness landscape (in

which case rF,f would be unaffected).

Expected correlation between selection and
evolution

We used individual-based computer simulations to

explore the expected relationship between selection

and evolution in a population similar to the snow vole

population. Building on the model developed in Bonnet

& Postma (2016), we simulated a heritable phenotypic

trait, as well as reproductive success and survival from

one year to the next, in discrete time, and considered

two age-classes (nonreproductive juveniles and repro-

ductive adults). For details of the simulation algorithm,

see Appendix S1-1.

For every simulation replicate, we extracted the

annual selection (standardized selection differentials)

and annual evolution (change in mean breeding value

for all individuals alive in one year and all individuals

alive in the next year), and computed the correlation

between them. We repeated this 500 times to estimate

the expected distribution of the correlation given a set

of parameter values. We tested the exactness of the

simulation algorithm by comparing the ratio of evolu-

tion (R) over selection (S) to the heritability simulated

(h2) (Appendix S1-1). Besides, the equality R
S
¼ h2 holds

when the assumptions of the breeder’s equation are

met, and our simulations provide a null model against

which to test our hypothesis that the assumptions of

breeder’s equation are not valid in the snow vole popu-

lation (Bonnet et al., 2017).

In a first step, we parameterized the simulations to

closely match important properties of the snow vole

Fig. 3 Estimates of (a) total, (b) viability and (c) fertility selection

gradients, year-by-year and across all years. Yearly estimates

(black dots with 95% CI error bars) were obtained by fitting

separate generalized linear models for each year. The overall

estimate (dashed line with 95% CI depicted in grey) was produced

by pooling all years together.
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data set: sample size in every year; amount of genetic

and environmental variance in size; strength and vari-

ability of selection. In a second step, we varied the heri-

tability (while holding the phenotypic variance

constant) or the monitoring duration, which allowed us

to explore how these two parameters affect the correla-

tion between selection and evolution (see Fig. 5 and

Appendix S1-1.2).

Inference of evolution and the contribution of
fluctuating selection

We estimated all quantitative genetic parameters by fit-

ting animal models (Henderson, 1950, 1975, 1976;

Kruuk, 2004) using MCMCglmm. This Bayesian pack-

age allows extracting and combining full posterior dis-

tributions of parameters. Unless stated otherwise, all

calculations were made on the posterior distributions

(rather than on point estimates) to propagate estima-

tion uncertainty and account for covariation between

parameters. For all models, we ran a MCMC chain long

enough to obtain 1000 posterior samples, with a thin-

ning interval large enough to keep the autocorrelation

for any parameter below 10%, and added a burnin of

about 20% of the total iterations. For fixed effects, we

always used the default priors, which are normal distri-

butions with means of zero and variances of 1010. For

random effects, we used inverse-Wishart priors, with

parameters V = 1 and m = 0.002 for univariate models

(equivalent to an inverse gamma distribution with

parameters a = b = 0.001), and with V = I(n) and

m = n + 1, where n is the number of traits considered

and I(n) is an identity matrix of dimension n, for multi-

variate models (see Appendix S1-2 for visual represen-

tations). All animal models included genetic groups

(Quaas, 1988) to model gene flow from immigrants and

to account for a difference in BMI breeding values

between immigrants and the base population of the

pedigree (Hadfield et al., 2010; Wolak & Reid, 2017). To

this end, we considered two groups, the base popula-

tion and immigrants, and used the explicit fixed effect

specification following Wolak & Reid (2017).

Because additive genetic variation in fitness is a pre-

requisite for a response to selection, we first estimated

the genetic variance in our fitness proxy F, using a uni-

variate animal model assuming a Poisson distribution

with a log link. Overdispersion is accounted for by

default in MCMCglmm. The model included an inter-

cept, age, sex and their interaction, as well as date of cap-

ture as fixed effects, and additive genetic effects,

individual identity (i.e. permanent environment effects),

maternal identity and year as random effects. Additive

genetic variance and heritability were estimated after

transformation from the latent scale to the data scale, by

integrating over all the random effects and fixed effects

(Morrissey,2015; de Villemereuil et al., 2016), using the

R package QGglmm (de Villemereuil et al., 2016).

We then used two approaches to infer the yearly rates

of evolution in BMI: (i) a univariate approach based on

best linear unbiased predictors (BLUPs) regression (Hen-

derson, 1950; Hadfield et al., 2010) and (ii) a multivari-

ate approach based on the Robertson-Price identity

(Price, 1970; Morrissey et al., 2012; Bonnet et al., 2017).

For the first approach, we fitted a univariate ani-

mal model to BMI data, including age, sex, their

interaction and date of capture as fixed effects, and

random additive genetic, permanent environment (i.e.

individual identity), maternal (maternal identity) and

year effects. For every two successive years, we com-

puted the genetic change in BMI between the two

sets of living individuals using BLUPs for breeding

values (following Hadfield et al., 2010). We simulated

genetic drift down the pedigree of the snow vole

population (following Hadfield et al., 2010; and using

the function rbv() in MCMCglmm, with genetic

groups to account for immigration), and computed

the range of genetic change between years that

genetic drift can produce. We visualized the temporal

dynamics of genetic evolution of BMI by fitting a

time spline (i.e. a smoother) to the breeding values

of all individuals alive in each year. The spline was

fitted using a generalized additive model in the R
package mgcv (Wood, 2011). We estimated a time

spline for each posterior sample of the distributions of

individual breeding values, to obtain the posterior dis-

tribution of evolution. We tested for the significance

of evolution using the same approach but using lin-

ear regressions.

Table 2 Selection and temporal variation in total selection (F), fertility selection (q) and viability selection (/) for body mass index.

Selection bz (SE) SDyear SEyear b0z (SE) rf (95% CI) rf=
��b0z

��

Total 0.639 (0.18) 1.198 0.753 0.598 (0.309) 0.691 (0.461; 1.153) 1.156

Fertility �0.204 (0.098) 0.277 0.160 �0.236 (0.219) 0.512 (0.385; 0.779) 2.167

Viability 0.433 (0.126) 0.843 0.533 0.439 (0.252) 0.642 (0.409; 1.024) 1.462

bz(SE) is the selection gradient across all years and its standard error; SDyear is the standard deviation of annual selection gradients; SEyear is

the mean standard error of these annual estimates; b0zðSEÞ is the selection gradient for the average year and its standard error; rf 95% CI is

the standard deviation of the distribution of selection gradients and its 95% confidence interval; rf=
��b0z

�� is the ratio of the standard devia-

tion in selection over the absolute median year selection, and indicates the likelihood of reversal in the direction of selection. All variables

were estimated from generalized linear (mixed) models using standardized body mass index.
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To quantify the role of variation in selection in shap-

ing the population’s evolutionary trajectory, we com-

puted the correlations between the annual estimates of

selection gradients and the change in breeding values

to the next year. We used the posterior distribution of

changes in breeding values, but only the point estimate

of annual selection gradients, to obtain a posterior dis-

tribution of correlations.

For the second approach, we would ideally have esti-

mated the genetic and environmental selection gradi-

ents for every year by fitting a multivariate animal

model treating BMI in each year as a different trait.

However, although we did initially fit such a model,

because of data limitations it did not reach convergence

and the priors dominated the posterior distribution.

Instead, we split the data in two groups of years: those

where our estimates of selection (as estimated above)

were positive, and those where they were negative (see

Reed et al., 2016 for a similar approach). We considered

BMI in these two groups of years as two different traits

(M+ and M�, respectively). We subsequently fitted a

trivariate animal model to the two BMI traits and our

annualized measure of fitness (F). This model allows

the estimation of an additive genetic covariance

between BMI and fitness for the two year classes. Based

on the Robertson-Price equation, these covariances pro-

vide a direct and unbiased expectation of the rate of

evolution during the two groups of years (Robertson,

1966; Price, 1970, 1972; Frank, 2012; Morrissey et al.,

2012). By measuring fitness on a yearly basis, we

removed the assumption of nonoverlapping genera-

tions. We compare and explain the advantages and

drawbacks of both approaches in the discussion.

The trivariate animal model can be written as

½Mþ;M�;F� � bX þ Z1aþ Z2mþ Z3pþ Z4yþ Ir;

where X, Z1, Z2, Z3 and Z4 are design matrices relating

BMI and fitness observations to the parameters to esti-

mate, b is a matrix of fixed effects, a, m, p and y are

random effects accounting for the variance associated

with additive genetic, maternal, permanent environ-

ment and year effects, respectively. Residuals r are

assumed to be normally distributed and independent,

and are therefore associated with observations by an

identity matrix I. The fixed part of the model matches

that used for each trait in univariate models (see

above).

The matrix of breeding values a follows a multivari-

ate normal distribution

a�MVN 0;A� Gð Þ
where A is the relatedness matrix between all individu-

als, and G is the additive genetic variance–covariance
matrix between the three traits.

G ¼
r2AðMþÞ rAðMþM�Þ rAðMþFÞ

rAðMþM�Þ r2AðM�Þ rAðM�FÞ
rAðMþFÞ rAðM�FÞ r2AðFÞ

0
@

1
A;

where r2AðMþÞ and r2AðM�Þ are the additive genetic vari-

ance for BMI in years with positive selection and nega-

tive selection, respectively; rA(M+M�) is the additive

genetic covariance between BMI in the two group of

years; r2AðFÞ is the additive genetic variance in fitness

across years, that is the genetic differential of fitness

itself (Fisher, 1958), and finally, rA(M+F) and rA(M�F)
are the additive genetic covariances between fitness

and BMI in years with high and low selection, respec-

tively. We computed the genetic gradients for both

groups of years as bAþ ¼ rAðMþFÞ=r2AðMþÞ and

bA� ¼ rAðM�FÞ=r2AðM�Þ. The additive genetic correla-

tion between BMI in the two groups of years was com-

puted as rA(M+M�)/rA(M+)rA(M�).
Environmental selection differentials rE(M+F) and

rE(M�F) were calculated as the sum of the covariances

between BMI and fitness in the random effect vari-

ance–covariance matrices for permanent environment,

maternal identity and the residuals. The environmental

variances r2EðMþFÞ and r2EðM�FÞ were obtained by sum-

ming the variance components of the same random

effects. Subsequently, the environmental selection

gradients were obtained using bEþ ¼ rEðMþFÞ=r2EðMþÞ
and bE� ¼ rEðM�FÞ=r2EðM�Þ. Finally, the phenotypic

selection gradients were recovered using ðrAðMþFÞþ
rEðMþFÞÞ=ðr2AðMþÞ þ r2EðMþÞÞ and ðrAðM�FÞ þ rE
ðM�FÞÞ=ðr2AðM�Þ þ r2EðM�ÞÞ. The phenotypic selection

gradients represent selection on the phenotype sensu

Lande & Arnold (1983), whereas the environmental

and the additive genetic selection gradient represent

the indirect action of selection (they are not selection

in a strict sense) on the environmental and additive

genetic part of phenotypic variation, respectively. These

three gradients are equal if the assumptions of the bree-

der’s equation are met, that is when the phenotypic

covariation between the trait and fitness is causal and

not in part the result of unmeasured environmental

covariates (Rausher, 1992). For size-related traits, dis-

proportionately large environmental selection gradients

might be interpreted as the effect of nonheritable body

condition shaping both mass and fitness, whereas the

additive genetic selection gradient captures causal,

direct selection on the trait.

To confirm the values of the genetic and environ-

mental covariances between BMI and F, we addition-

ally ran two bivariate animal models with M+ and F,

and M� and F, respectively. In addition, to confirm the

stability of the genetic covariance through time (see

Results), we refitted the trivariate model, but instead of

distinguishing between years with positive and negative

phenotypic selection, we treated BMI in every second

year as one trait (equivalent to M�), and BMI in the
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other years as another trait (equivalent to M+). Finally,

we assessed potential biases in bA � bE generated by

splitting the data set into two groups of years on the

basis of the direction of phenotypic selection: Using the

R-package pedantics (Morrissey & Wilson, 2010),

we simulated phenotypes and fitness values with bA
equal to bE, split the data based on the sign of the

selection differential in every year, and fitted animal

models to estimate the expected distribution of

bA+ � bE+ and bA� � bE�. See Appendix S1-4 for

details.

Results

Yearly estimates of selection

Annual selection gradients varied considerably (stan-

dard deviation = 1.198) around the overall selection

gradient (0.639 � SE 0.18; Fig. 3a). Estimates of total

selection were mostly positive, but appeared to have

been negative in 3 years. Although the standard devia-

tion of the yearly estimates was greater than the overall

selection gradient, a large proportion of this variation

must be attributable to sampling error. Indeed, yearly

selection was estimated with much less precision than

overall selection, as is reflected by a mean standard

error of the yearly estimates of 0.753. Fertility and via-

bility selection gradients showed similar patterns

(Fig. 3b,c): the standard deviations of the estimates of

viability and fertility selection were high, but so were

the mean standard errors of these estimates (Table 2).

Fluctuation of selection

Fitting eqn (3), we estimated rF,f = 0.691 [95% CI

(0.461; 1.153)] and rF;f=
��b0F;z

�� ¼ 1:156. Assuming a nor-

mal distribution of selection gradients and a ratio of stan-

dard deviation over mean of 1.156, a reversal of the

direction of selection would be occasional (about once

every 5 years). Refitting eqn (3) with BMI standardized

within years yielded a similar estimate of rF,f [0.674

(0.433; 1.162)]. Variance in fertility selection was esti-

mated as rq,f = 0.512 [95% CI (0.385; 0.779)], more

than twice the absolute median selection gradient

(Table 2), meaning that selection was very likely to

change direction. Variance in viability selection was esti-

mated as r/,f = 0.642 [95% CI (0.409; 1.024)]. The cor-

relations between random intercepts and random slopes

were close to zero for all three models (rF,(l,f) = �0.11,

rq,(l,f) = 0.08, r/,(l,f) = �0.16), suggesting appropriate

estimation of the variance components (the correlation is

close to 1 or �1 when the model fit is (quasi-)singular).

Fluctuation of evolution

There was a small but significant amount of additive

genetic variation in our proxy of annual fitness: on the

latent scale of the Poisson model, the additive genetic

variation was estimated to be 0.299 (0.086; 0.692). On

the scale of the data, this translates into an additive

genetic variance of 0.280 (0.001; 0.994) and a heritabil-

ity of 1.13% (0.06%; 5.01%). This is comparable to the

heritability of lifetime fitness in Bonnet et al. (2017),

which used a lifetime rather than annual measure of

fitness. We found significant additive genetic variation

in BMI [167 g2/m2 (98; 307)]; heritability = 16.7%

(8.9%; 26.3%). In this population, there is evidence for

adaptive evolution towards lower body size from 2006

to 2014 (Bonnet et al., 2017). This pattern is also found

for BMI (Fig. 4), with a decrease in mean breeding

value of �3.69 (�8.13; 0.51) on a mean trait value of

288, and a 3% probability that the trend is not nega-

tive. The trend might have reversed between 2014 and

2016 (Fig. 4), when there is some evidence that the

breeding values for BMI have increased by 2.51 (�1.1;

8.42) (6.5% probability that the change is not positive).

The decrease in breeding values from 2006 to 2014 is

unlikely to have been produced solely by genetic drift,

with a probability that drift generated a decrease that is

at least as large of pMCMC = 0.064 (see also Bonnet

et al., 2017), whereas drift could have produced the

rebound from 2014 to 2016 (pMCMC = 0.24).

From selection to evolution

Given the heritability of BMI and the duration of the

snow vole monitoring, the correlation between selec-

tion gradients and change in breeding values from

1 year to the next is expected to be strongly positive on

average, but also highly variable: individual-based sim-

ulations show that the distribution of the correlation

between selection and evolution has its mode at 0.68

with 95% CI (�0.12; 0.94) (see Fig. 5 and

Fig. 4 Temporal dynamics of mean breeding values for body mass

index (BMI). Each line was obtained from a different MCMC

posterior sample, by fitting a time spline to the mean of estimated

breeding values among individuals alive in any given year.
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Appendix S1-1.2). This variability is due to strong

genetic drift combined with the relatively small number

of years. Increasing the heritability of the trait increases

the expected correlation and reduces its variability

(Fig. 5), whereas increasing the duration of the moni-

toring reduces variability only (Appendix S1-1.2).

Empirically, the correlation is estimated with much

uncertainty and is not statistically significantly different

from zero (pMCMC = 0.08). Nevertheless, the most likely

value is positive [mode 0.33, 95% CI (�0.07; 0.71)]

and does not lie in the extreme tail of the theoretical

distribution (Fig. 5).

As expected, in years with positive selection (based

on selection gradients from year-by-year GLMs, see

above), the selection gradient reconstructed from our

trivariate animal model was positive, whereas it was

negative for years with negative selection gradients

(Fig. 6). Importantly however, the genetic gradients

were negative in both groups of years (Fig. 6) and did

not differ from each other [bA+ � bA� = �0.0011, 95%

CI (�0.0164; 0.0112), pMCMC = 0.72].

The environmental gradients, on the other hand, dif-

fered from each other [bE+ � bE� = 0.0218, 95% CI

(0.0009; 0.0355), pMCMC = 0.036], with bE+ being signifi-

cantly positive, and bE� slightly negative. Moreover, dur-

ing years of positive selection, the genetic and

environmental gradients were of opposite sign (Fig. 6),

and significantly different [bA+ � bE+ = �0.0260, 95%

CI (�0.0454; �0.0028), pMCMC = 0.034]. On the other

hand, during years of negative selection, the genetic and

environmental gradients were both negative (Fig. 6) and

not significantly different [bA� � bE� = �0.0045, 95%

CI (�0.0282; 0.0205), pMCMC = 0.824]. Finally, the

genetic correlation between BMI in positive selection

years and BMI in negative selection years was strongly

positive [0.61, 95% CI (0.22; 0.83)]. The stability of these

results was confirmed by splitting the data set differently

(see Appendix S1-3).

Discussion

Here we have shown that selection on BMI fluctuates

in a natural population of snow voles. In addition, we

have shown that BMI has evolved, but that both the

rate and direction of evolution do not appear to be

tightly coupled with the dynamics of selection. Below

we discuss the methodological challenges posed by the

quantification of variation in selection and its evolu-

tionary relevance, and our contribution to their resolu-

tion. We then discuss whether our analyses can inform

us about the mechanisms of fluctuating selection and

what is needed to answer the questions that are beyond

the reach of our analyses. Finally, we discuss the

importance of timescale when studying variation in

selection and evolution.

The modelling of evolution and selection

The random regression method of Chevin et al. (2015)

provides a statistically rigorous way to quantify and test

for the significance of variation in selection. On its

own, however, a random regression does not address

the evolutionary relevance of fluctuating selection. To

establish the latter, two additional issues need to be

investigated: (i) variation in the strength of selection

will reverse the direction of evolution only if it fluctu-

ates not only in strength, but also in direction (see

Fig. 1b,c); (ii) as selection does not always lead to an

evolutionary response (Rausher, 1992; Meril€a et al.,

2001; Morrissey et al., 2010), fluctuating selection does

Fig. 5 Realized correlation between selection and evolution as a

function of simulated heritability. Selection was measured as a

standardized selection differential on annualized fitness, and

evolution wasmeasured as the difference betweenmean breeding

values of individuals present in one year and those presents in the

next year. Simulations consisted of eleven years (as in the snow vole

data set). The empirical estimates for the heritability and the

correlation are drawn in red, together with their confidence intervals.

Fig. 6 Phenotypic selection gradients and their decomposition into

environmental and genetic gradients for years with positive

selection on body mass index (BMI) and for years with negative

selection on BMI. Error bars show 95% confidence intervals.
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not necessarily translate into fluctuating evolution (see

Fig. 1d).

To address the first issue, we considered where the

distribution of selection gradients, estimated by a ran-

dom regression, is located relative to zero. If this distri-

bution is centred around zero, selection reversal is

frequent, whereas if the distribution does not overlap

much with zero, selection reversal is rare. We evaluated

the likelihood of selection reversal by calculating the

ratio of the standard deviation of selection gradients over

the absolute median selection gradient (rf=
��b0z

��). As this
ratio increases, the fluctuation of selection becomes

increasingly biologically relevant, and a reversal

becomes increasingly likely. However, even if the distri-

bution of selection gradients is symmetric (which it does

not have to be), as our estimate of the distribution of

selection gradients is based on a finite number of years,

it is unlikely to comply with an inverse Z-distribution.

Furthermore, as selection gradients may show temporal

autocorrelation, the appropriate number of degrees of

freedom is unclear. Furthermore, as selection gradients

may show temporal autocorrelation, the appropriate

number of degrees of freedom is unclear. Hence, we are

reluctant to translate this ratio into a probability of

reversal. Nevertheless, it gives a qualitative assessments

of the likelihood of reversal that could be developed fur-

ther into a more quantitatively rigorous measure.

To address the second issue, we estimated the cou-

pling between variation in selection and variation in

genetic change. This exercise proved to be challenging

and provided somewhat mixed results. In a first

approach, we computed the correlation between selec-

tion and year-to-year changes in breeding values by

relating the full distribution of the change in BLUPs for

breeding values to point estimates of selection gradi-

ents. Therefore, the uncertainty accompanying the

selection estimates was not propagated to this correla-

tion. In contrast, the trivariate animal model estimates

selection and evolution within the same model, along

with their respective uncertainties. This allows for the

integration of uncertainty in both selection and evolu-

tion when comparing genetic and environmental gradi-

ents, and to take into account the nonindependence of

their posterior distributions. Unfortunately however,

this multivariate approach is particularly data hungry,

and the snow vole population is too small to estimate

year-specific genetic parameters. As a consequence, we

were forced to compare groups of years with negative

and positive selection, although this approach generates

a bias in the estimated difference between genetic and

environmental gradients (Appendix S1-4). Fortunately,

in our particular case, the bias is in the direction oppo-

site to our findings, and our analyses are hence statisti-

cally conservative. Nevertheless, the presence of biases

makes this approach risky, and its correct interpretation

relies on computationally intense simulations. In con-

clusion, whenever the population size allows for it, and

to avoid the aforementioned problems and biases, we

advocate the use of year-specific multivariate animal

models for assessing the coupling of selection and evo-

lution.

Coupling of selection and evolution

Simple algebra shows that a positive correlation

between selection and evolution is expected. For a trait

z, a selection gradient is the ratio of the phenotypic

covariance between trait and relative fitness, over the

phenotypic variance in the trait:

bP ¼ rPðz; FÞ
r2PðzÞ

:

Assuming a standard quantitative genetic model in

which there is no correlation or interaction between the

genetic effects and the environmental effects (i.e. an

absence of genotype–environment correlations and inter-

actions), z can be decomposed into additive genetic effects

and environmental effects z = a + e. Similarly, the phe-

notypic covariance (rP(z, F), i.e. the selection differential)

can be decomposed into an additive genetic (rA(z, F)) and
an environmental covariance (rE(z, F)). Therefore, the

phenotypic selection gradient (bP) can be written as:

bP ¼ rAðz; FÞ þ rEðz; FÞ
r2PðzÞ

:

According to the Robertson-Price identity (Robertson,

1966; Price, 1970), rA(z, F) is the expected rate of

genetic change. From the above, it follows that the

phenotypic selection gradient is likely to be positively

correlated with evolution (provided the latter is non-

zero). Even if their signs are opposite in all years, years

with more positive selection gradients will go with less

negative genetic change, and vice versa.

Using computer simulations, we found that for our

data set, if the relationship between trait and fitness

(i.e. selection) is causal (Reed et al., 2016), the correla-

tion between evolution and selection is expected to be

relatively strong and positive [0.68, 95% CI (�0.12;

0.94)]. Nevertheless, this correlation has a 7.8% (SE

0.2%) probability to be zero or negative because of the

potentially large effect of genetic drift.

The observed correlation between selection and evo-

lution among years was not significantly different from

zero nor from the theoretical expectation (see Results).

Nevertheless, there are good reasons to think that phe-

notypic selection on size may not translate into consis-

tent evolution: (i) across-year selection favours larger

sizes (Fig. 3), whereas evolution is towards smaller sizes

(Fig. 4); and (ii) in years of positive selection, the

genetic gradient differs in sign from the environmental

and phenotypic gradients (Fig. 6), a pattern also seen
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when analysing all years together (Bonnet et al., 2017).

Therefore, our finding that the correlation between

selection and evolution does not deviate significantly

from the null expectation may be the result of a lack of

statistical power, and not of the lack of an environmen-

tal bias.

What drives fluctuations in selection?

Although our random regression and quantitative

genetic models give a thorough description of the

dynamics of selection and evolution in this population,

they do not provide direct insight into the underlying

mechanisms. We have shown that selection fluctuates,

and thus that the relationship between size and fitness

changes at the population level, but why does selection

change? Different processes may lead to the same distri-

bution of directional selection gradients, and based on

the analysis of selection gradients alone, it is difficult to

distinguish fluctuations due to a moving fitness opti-

mum from those due to a change in the distribution of

phenotypes among years (Chevin & Haller, 2014). The

latter could have played a role here as we find substan-

tial variation between years in both the mean pheno-

type (ranging between 277 and 312 g/m) and its

variance (ranging between 1779 and 4573 g2/m2). Nev-

ertheless, we can rule out that change in the pheno-

typic distribution played a major role in the fluctuation

of selection because the estimate of variation in the

slope of selection was almost identical in models where

the phenotype was standardized among years vs. within

years. Fluctuation in selection was therefore the result

of variation in the fitness landscape, but we do not

know what drove this variation.

If we are to gain a deeper understanding of the

dynamics of the fitness landscape and the ecological

drivers of selection, we ultimately need to move

beyond the estimation of variance parameters, towards

a more mechanistic understanding of the genetic and

ecological sources of phenotypic variation and their

covariance with fitness (Morrissey & Hadfield, 2012).

Good examples where we know the detailed ecological

driver of variation in selection are still scarce. Some

notable exceptions include beak size in Darwin finches

(Grant & Grant, 2002), reproductive timing in great tits

(Husby et al., 2011), and insecticide resistance in Culex

mosquitoes (Milesi et al., 2016). All of these, as well as

this study, rely on individual-based long-term monitor-

ing, difficult and costly to upkeep, but necessary to dis-

entangle the causes and consequences of selection in

natural populations (Clutton-Brock & Sheldon, 2010).

The snow vole monitoring is more complete and spans

over more generations (approximately nine) than most

longitudinal studies of wild populations, but our simu-

lations highlight that this is not sufficient yet to fully

describe the evolutionary consequences of fluctuating

selection on size. Future studies might hence consider

specifically targeting highly heritable traits (Fig. 5) to

obtain a stronger and less variable expected correlation

between selection and evolution, whereas they wait for

more data to accumulate.

Alternatively, meta-analyses of many replicated esti-

mates of selection may reveal preponderant drivers of

selection across species and ecosystems, even if individ-

ual studies are often short-term and lack resolution

(e.g. Caruso et al., 2017; Siepielski et al., 2017).

Timescale

Despite fluctuations in the strength and direction of

phenotypic selection, the rate and direction of evolu-

tion was constant and nonzero over most of the study

period. Thereby, our findings are at odds with the idea

that fluctuating selection causes short-term evolution-

ary stasis. Nevertheless, fluctuating selection may be a

driver of short-term evolutionary dynamics in other

natural populations, where the selection measured by

regression-based methods is causal and not dominated

by an environmental covariation between traits and fit-

ness. Moreover, it is unlikely that fluctuating selection

will not be evolutionary relevant on longer timescales,

in the snow voles and in other species. Indeed, over

geological timescales, bounded fluctuations of pheno-

typic evolution are increasingly attributed to responses

to fluctuating selection, rather than to sampling varia-

tion and evolutionary stasis (Uyeda et al., 2011; Voje

et al., 2015). Unless the environment is constant, causal

selective pressures are likely to change over longer time

periods, either because the fitness landscape changes or

because the phenotypic distribution changes through

evolutionary adaptation or phenotypic plasticity.

Fluctuating selection and evolution might go unde-

tected because the time frame is too short. For instance

in the snow vole population, adaptive evolution and

the causal selective pressure causing it are probably

related to a short-term climatic anomaly which goes

against long-term changes induced by global climate

change. On the other hand, we may have missed some

fluctuating selection and evolution because the tempo-

ral resolution at which selection is estimated is too low,

smoothing out very short-term changes in selection

and the rate of genetic change. The latter is not unli-

kely in the snow vole population, where the causal

selective pressure varies seasonally: viability selection is

null early in the reproductive season and increases

throughout summer (Bonnet et al., 2017).

Conclusion

Whereas our results do not argue against the evolution-

ary relevance of fluctuating selection in general, they

warn against interpreting any phenotypic fluctuating

selection in terms of fluctuating evolution: as the

dynamics of selection and evolution can be uncoupled

ª 2018 EUROPEAN SOC I E TY FOR EVOLUT IONARY B IO LOGY . J . E VOL . B I OL . do i : 1 0 . 1 11 1 / j e b . 1 3 24 6

JOURNAL OF EVOLUT IONARY B IOLOGY ª 2018 EUROPEAN SOC I E TY FOR EVOLUT IONARY B IO LOGY

12 T. BONNET AND E. POSTMA



on certain timescales, fluctuating selection does not

necessarily provide a general explanation for evolution-

ary stasis. Thereby, we have highlighted the danger of

relying on temporally replicated phenotypic estimates

of selection to understand and predict the evolutionary

dynamics of natural populations. Instead, quantifying

the evolutionary relevance of fluctuating selection

requires a joint analysis of selection and evolution.
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