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Abstract

Additive genetic variance in relative fitness (σ2
A(w)) is arguably the most important evolutionary 

parameter in a population because, by Fisher’s fundamental theorem of natural selection (FTNS; 
Fisher RA. 1930. The genetical theory of natural selection. 1st ed. Oxford: Clarendon Press), it 
represents the rate of adaptive evolution. However, to date, there are few estimates of σ2

A(w) in 
natural populations. Moreover, most of the available estimates rely on Gaussian assumptions 
inappropriate for fitness data, with unclear consequences. “Generalized linear animal models” 
(GLAMs) tend to be more appropriate for fitness data, but they estimate parameters on a 
transformed (“latent”) scale that is not directly interpretable for inferences on the data scale. Here 
we exploit the latest theoretical developments to clarify how best to estimate quantitative genetic 
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parameters for fitness. Specifically, we use computer simulations to confirm a recently developed 
analog of the FTNS in the case when expected fitness follows a log-normal distribution. In this 
situation, the additive genetic variance in absolute fitness on the latent log-scale (σ2

A(l)) equals 
(σ2

A(w)) on the data scale, which is the rate of adaptation within a generation. However, due to 
inheritance distortion, the change in mean relative fitness between generations exceeds σ2

A(l) and 
equals (exp(σ2

A(l))− 1). We illustrate why the heritability of fitness is generally low and is not a 
good measure of the rate of adaptation. Finally, we explore how well the relevant parameters 
can be estimated by animal models, comparing Gaussian models with Poisson GLAMs. Our 
results illustrate 1) the correspondence between quantitative genetics and population dynamics 
encapsulated in the FTNS and its log-normal-analog and 2) the appropriate interpretation of GLAM 
parameter estimates.

Subject area:  Quantitative genetics and Mendelian inheritance
Key words:  animal model, fundamental theorem of natural selection, GLMM, heritability, quantitative genetics

The concept of “fitness” has been central to evolutionary biology since 
the beginnings of the field (Wagner 2010). An increase in mean fitness 
in a population, for example due to adaptive evolution, can increase 
a population’s growth rate and thus reduce the risks of population 
extinction in the face of environmental changes (Saccheri and Hanski 
2006; Hendry et  al. 2018). The rate of genetic evolution in mean 
fitness (i.e., the change due to a response to selection) therefore pro-
vides an integrative measure of adaptation. By Fisher’s fundamental 
theorem of natural selection (FTNS; Fisher 1930), this change in 
mean relative fitness due to selection equals the additive genetic vari-
ance in relative fitness in a population, making the additive genetic 
variance in relative fitness arguably the most important evolutionary 
parameter for a population. However, its empirical estimation is ex-
ceptionally difficult, and as a result, estimates to date are still relatively 
scarce (Hendry et al. 2018). One of the most challenging aspects in 
the estimation of additive genetic variance in fitness is the statistical 
issue that individual fitness typically follows a non-Gaussian distribu-
tion and hence should be analyzed using more complex “generalized” 
linear models (Bolker et al. 2009). These models come with inherent 
difficulties of interpretation of parameters on different scales: of par-
ticular relevance to any application of Fisher’s FTNS is the fact that 
genetic effects that are additive on the (“latent”) scale of estimation 
are no longer solely additive when transformed back to the scale of 
the observed data: additive genetic variance on the latent scale, there-
fore, maps to both additive and nonadditive genetic variance on the 
original data scale. Usefully, however, recent theoretical developments 
have provided ways of dealing with these issues, in particular via an 
analog of Fisher’s FTNS that predicts rates of change in mean fit-
ness when fitness follows a log-normal distribution (Morrissey and 
Bonnet 2019). Here, we present an overview of the issues and use 
simulated fitness data to ask: how can we predict the rate of evolu-
tionary adaptation when fitness is log-normal?

Before dealing with the complexities of the alternative scales, we 
first outline some general issues relevant to the estimation of genetic 
variance in fitness. Many readers will be most familiar with herit-
ability as a measure of genetic variance and as a determinant of the 
rate of trait evolution, and the narrow-sense heritability of fitness 
has been a parameter of interest in empirical studies over several 
decades (Gustafsson 1986; Jones 1987; Kruuk et al. 2000; Merilä 
and Sheldon 2000; Reid et al. 2011). However, heritability is not a 
perfect measure of the ability of a trait to evolve (Hansen et al. 2011) 
and in the case of fitness, a more useful measure of the rate of gen-
etic evolution is the additive genetic variance. To see why this is the 
case, consider the “breeder’s equation” (Lush 1937) prediction for a 

response to selection applied to relative fitness (w) (see also Walsh 
and Lynch 2018, chapter  6). Under some assumptions (Heywood 
2005; Morrissey et al. 2010), the breeder’s equation predicts R = h2S, 
where R is the response to selection, that is, the expected change in 
mean relative fitness between 2 successive generations (keeping the 
same reference to compute relative fitness), S is the selection differ-
ential on relative fitness, and h2 is the narrow-sense heritability, that 
is, the proportion of additive genetic variance (σ2

A(w)) relative to 
the phenotypic variance in relative fitness (σ2

P(w)). Assuming that 
there is no covariation between genetic and environmental sources 
of phenotypic variation, σ2

P(w) = σ2
A(w) + σ2

E(w), where σ2
E(w) is the 

environmental variance in relative fitness.
The heritability of fitness is thus h2 = σ2

A(w)/(σ2
A(w) + σ2

E(w)), 
so for a given σ2

A(w), increasing σ2
E(w) decreases h2. This result sug-

gests that an increasing σ2
E(w) should decrease R. However, in the 

case of fitness, increasing σ2
E(w) also means increasing S. This is be-

cause a selection differential is defined as the phenotypic covariance 
(σP) between a trait and relative fitness (Price 1970):

S = σp (w, Z), whereZ is any trait under selection
= σp (w,w), because Z = w
= σ2

p (w), by def inition of variance and covariance
=σ2

E (w) + σ2
A (w), assuming no covariation between

genetic and environmental deviations

Therefore,

R = h2S

=
σ2
A(w)

σ2
A(w) + σ2

E(w)
× (σ2

A(w) + σ2
E(w))

= σ2
A(w)

When σ2
E(w) increases, the increase in selection exactly compensates 

the decrease in heritability. In other words, the more phenotypic 
variation in fitness (i.e., opportunity for selection) there is, the more 
selection can give amplitude to the heritable part of fitness, although 
selection captures the heritable part less reliably.

Selection on fitness always causes the breeding values for rela-
tive fitness to increase by an amount of σ2

A(w) within a generation. 
This is Fisher’s FTNS (Fisher 1930), as also recovered above using 
the breeder’s equation (and sometimes written equivalently as the 
change in mean absolute fitness, W̄ , by ∆W̄ = σ2

A(W)/W̄ ). In 
the absence of changes in the environment, the increase in mean 
breeding values is perfectly transmitted to the next generation and 
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increases the population growth rate by σ2
A(w). Note that here the 

“environment” is actually defined in part by genetic properties of 
the population such as allele frequencies, and indirect genetic effects 
due to interactions with conspecifics, so in practice the relationship 
between Fisher’s FTNS and population growth rate relies on large 
assumptions (Price 1972a; Ewens 1989).

Despite these assumptions, for empiricists, σ2
A(w) can give a 

useful integrative measure of evolution through natural selection 
(Shaw and Shaw 2014). In other words, it can be used as a proxy of 
how fast a population is currently evolving, assuming evolutionary 
forces other than selection are negligible (Morrissey et al. 2010). It 
can also potentially be used as an indication of whether a popula-
tion can persist in the face of environmental change, and hence as 
a link between evolutionary and population dynamics (Asmussen 
1983; Gomulkiewicz et al. 2010; McPeek 2017, chapter 3). Finally, 
σ2
A(w) indicates whether there is the potential for any other trait 

to evolve, as if σ2
A(w) = 0, no trait can evolve by direct adapta-

tion in the current environment (Heywood 2005; Morrissey et al. 
2010), although see Bijma 2010; Fisher and McAdam 2019) for 
indirect adaptation). Empirical knowledge of σ2

A(w) could, there-
fore, be central to both fundamental research and applications in 
agronomy and wildlife management. However, this potential im-
portance is at odds with the scarcity of estimates of σ2

A(w) in nat-
ural populations.

Burt (1995) identified 12 estimates of σ2
A(w) from natural popu-

lations, with values ranging from 0 to 0.2. More recently, Hendry 
et al. (2018) identified 22 studies of 16 species estimating σ2

A(w) in 
wild plants and animal populations, with values ranging from 0 to 
0.85 but mostly below 0.2. These few estimates form, to our know-
ledge, the entirety of current knowledge about this crucial parameter 
in natural populations—a paucity that contrasts markedly with the 
large number of estimates of genetic variance in a range of other 
traits (e.g., Postma 2014) reports upwards of 16 000 estimates in 
natural populations). Furthermore, many of the current estimates of 
σ2
A(w) may be unreliable because of data limitations and statistical 

problems, which we discuss in detail below. Given the tremendous 
theoretical importance of genetic variation in fitness, why are there 
so few reliable estimates of σ2

A(w) in natural populations?
A first explanation for the scarcity of estimates of σ2

A(w) is that 
researchers do not attempt to estimate it because they expect the 
value will be close to zero (Shaw and Shaw 2014). This expectation 
comes from the intuition that populations appear generally adapted 
to their environments or at least are thought to have lived in their 
environment long enough to be at evolutionary equilibria (e.g., Jones 
1987). Theory shows that at evolutionary equilibrium, mutation, mi-
gration, and spatiotemporal variation in selection typically introduce 
only negligible additive genetic variance in fitness (Charlesworth 
1987). However, most populations are probably not at evolutionary 
equilibrium (Shaw and Shaw 2014), especially not in contemporary 
times affected by anthropogenic environmental changes (Pelletier 
and Coltman 2018). Furthermore, the few estimates available sug-
gest that additive genetic variance in fitness can be significant and 
may be larger than additive genetic variance in other traits when 
expressed as a coefficient of variation (Merilä and Sheldon 2000)—
although this may be difficult to interpret given that right-skewed 
traits (such as fitness) typically have higher coefficients of variation 
(Kruuk et al. 2000). Of relevance here is the fact that, in the case of 
fitness, the (square of the) coefficient of genetic variation in absolute 
fitness is equivalent to the genetic variance in relative fitness (σ2

A(w)).
Second, the estimation of σ2

A(w) requires measures of the fitness of 
individuals in a population, combined with estimates of their genetic 

relatedness. The measurement of individual fitness and relatedness 
used to be very challenging, if not impossible, in natural popula-
tions, and still requires intense research efforts (Clutton-Brock and 
Sheldon 2010; Hendry et al. 2018). Indeed, measuring fitness means 
tracking the survival and reproduction of most individuals in a 
population through their lifetimes and their natural environment. 
As a consequence, many more studies estimate genetic parameters 
for components of fitness than for total fitness, and therefore are not 
able to capture the full genetic variance in fitness, which could be 
either larger or smaller depending on genetic variances and covari-
ances between all components of fitness (Postma 2014; Shaw and 
Shaw 2014). Fortunately, long-term monitoring of wild populations 
is becoming more common, and studies are accumulating the neces-
sary data, the quality of which is continually improving with the ar-
rival of new techniques. The accumulation of fitness and relatedness 
data over several generations thus increases the range of models that 
can be fitted and the complexity of questions that can be addressed 
(Clutton-Brock and Sheldon 2010; Kruuk et al. 2014a).

A third problem relates to why the few estimates of σ2
A(w) avail-

able to date may be unreliable. Quantitative genetic methods used 
for the first estimates of σ2

A(w) in natural populations, for instance 
using parent–offspring regression (POr), are prone to biases due 
to transgenerational shared environments among relatives (Kruuk 
2004) and lack of statistical power (de Villemereuil et  al. 2013). 
“Animal models,” a special type of mixed-effect models using pair-
wise relatedness matrices (Henderson 1950), are more powerful, 
better able to separate genetic and nongenetic causes of similarity 
between relatives and, unlike POr, able to directly estimate σ2

A for 
a trait. Animal models have been widely adopted in recent decades 
for studies of genetic variation in natural populations (Kruuk 2004; 
Wilson et al. 2010) and continue to be developed to better address 
questions in natural populations (e.g., Kruuk et al. 2014a).

The 3 problems described above are generally acknowledged 
and, while collection of suitable empirical data will always be chal-
lenging, should not hinder further attempts at estimation of σ2

A(w). 
By contrast, a fourth problem has received less attention and hence 
is our focus here: estimates for σ2

A(w) to date may be few and may 
possibly be unreliable because of difficulties inherent in modeling 
fitness distributions.

Quantitative genetics most often uses statistic analyses which 
assume that traits follow a normal distribution (e.g., Lush 1937; 
Lande 1979). However, in nature, many traits of interest, and in 
particular fitness, follow highly non-Gaussian distributions often 
with high skewness (e.g., Walsh and Lynch 2018, chapter 24), and 
it is generally unclear what the consequences of breaking the as-
sumption of normality are. To date, the problem has primarily been 
addressed through various approximations that can perform well 
for some forms of distributions and some parameter values (e.g., 
for binary data, van Vleck 1972; Roff 2001; de Villemereuil et al. 
2013). However, the statistical methods required to estimate σ2

A(w) 
appropriately have improved dramatically in recent years. Empirical 
analyses of fitness can be conducted using “generalized linear animal 
models” (GLAMs): “generalized” in that they allow for error distri-
bution models other than a normal distribution (Bolker et al. 2009) 
and “animal models,” in that one of the random effects is an additive 
genetic effect with covariance structure determined by a pairwise re-
latedness matrix (for examples of GLAMs, see Hadfield 2010; Milot 
et al. 2011; Wilson et al. 2011; de Villemereuil et al. 2013; Mair et al. 
2015; see also the Aster method, Geyer et al. 2007).

When fitness is non-Gaussian, GLAMs will afford a more ap-
propriate fit to the data, better model predictions, and more reliable 
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ascertainment of uncertainty than linear animal models. However, 
any generalized linear model (GLM) estimates parameters on a 
transformed scale (the “latent scale”) based on a link function of 
the data, and estimates on this latent scale may not be directly inter-
pretable or applicable to theoretical predictions, as they no longer 
involve the same units as the original scale on which the data were 
observed. Furthermore, linear models predict values on a continuous 
scale, which will differ from the discrete (e.g., integer) values taken 
by traits such as fitness, introducing an additional step of transla-
tion from an “expected” (continuous) to “observed” (discrete) data 
scale. Following de Villemereuil et  al. (2016), we set out the rela-
tionship between the latent and the 2 data scales in Figure 1. The 
Gaussian distribution assumed on the latent scale of a GLAM (or of 
any GLM) maps onto an “expected” data scale via a link function 

(such as a logarithm). This “expected scale” relates to the actual 
observed “data scale” via a stochastic data-generating process, 
such as a Poisson process, with a single value on the expected scale 
generating a range of realized values on the data scale. This second 
step is what sets GLAMs apart from animal models using Gaussian 
models of simple data-transformations, such as taking the logarithm 
of fitness plus one (e.g., Kruuk et al. 2000). In any GLM (or data-
transformed linear model), the latent-scale estimates obtained may 
be biologically difficult to interpret (Mitchell-Olds and Shaw 1987; 
Hendry et al. 2018). However, it is now possible to transform es-
timates of latent-scale parameters from GLMs, and in particular 
from GLAMs, back to the required data scale. An important recent 
step forward has been the development of general methods to back-
transform parameters on the latent scales of generalized linear mixed 
models (including GLAMs) to the data scales (Morrissey 2015; de 
Villemereuil et al. 2016).

We consider here the case in which expected fitness is log-normal, 
so that log transformation yields a Gaussian distribution. GLMs of 
common distributions such as the Poisson or negative binomial typ-
ically use a logarithmic link function. Importantly, for a GLAM of 
absolute fitness, back-transformation of values of latent-scale addi-
tive genetic variance can correctly estimate the additive genetic vari-
ance in relative fitness on the data scale (de Villemereuil et al. 2016), 
which is the rate of increase in relative fitness within a generation. 
However, in a sense, estimates generated from back-transformation 
of parameters from GLAMs may not be appropriate for prediction 
of data-scale change in mean fitness between generations. This is be-
cause the link functions used in GLAMs can introduce nonlinearities 
of breeding values. so that perfectly additive genetic effects on the la-
tent scale translate into both additive and nonadditive genetic effects 
(epistasis and dominance) on the data scale (Morrissey 2015). The 
presence of nonadditive genetic effects means that the change within 
a generation is not accurately transmitted to the next generation. 
As a result, the inheritance of fitness is distorted, and the increase in 
mean fitness in the next generation exceeds that due strictly to selec-
tion alone (Morrissey 2015).

This problem can now be circumvented using an analog to 
Fisher’s fundamental theorem for log-normal fitness, proposed by 
Morrissey and Bonnet (2019), which predicts the proportional 
change in mean fitness (absolute or relative if the same reference 
is kept across generations) on the data scale, based on the amount 
of additive genetic variance on a logarithmic latent scale while ac-
counting for inheritance distortion: ∆w̄ = exp(σ2

A(l))− 1, where l is 
absolute fitness on the latent scale. Poisson GLAMs using a loga-
rithm link function to model fitness match this theoretical frame-
work because they assume that expected values of fitness follow a 
log-normal distribution. Thus if σ2

A(l) is the estimate of latent-scale 
additive genetic variance for fitness from a Poisson GLAM, the rate 
of increase in mean fitness—or the rate of adaptation—can be pre-
dicted as exp(σ2

A(l)− 1) (Morrissey and Bonnet 2019).
In this article, we use individual-based simulations to verify the 

FTNS and this recent analog when fitness follows a log-normal dis-
tribution. We generate pedigrees and individual-fitness data with 
known underlying genetic variance and statistical distribution, 
across several generations. We then start by illustrating key rela-
tionships between the population dynamics and the quantitative 
genetic parameters of log-normal fitness that have not yet been de-
scribed in the evolutionary literature or may not be well known to 
evolutionary biologists. In particular, we show how additive genetic 
variance in absolute fitness on the latent scale σ2

A(l) translates into 
additive and nonadditive genetic variance in relative fitness on the 
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Figure 1.  Relationships between the scales of the generalized linear (animal) 
model using a Poisson trait distribution and a logarithm-link function. x 
axes represent absolute fitness on different scales, and y axes represent 
probability density. Solid arrows represent the deterministic, one-to-one 
relationship linking the latent scale to the expected data scale (determined 
by the link function). The expected scale relates to expected fitness values 
that can be understood as the average fitness of an individual that would 
emerge from observing their fitness many times. Expected fitness is on a 
continuous scale because these averages can take any positive value. 
However, lifetime absolute fitness is expressed only once for each individual 
and, as defined here in terms of counts of offspring, can only be an integer 
value. Therefore, realized fitness on the data scale will generally deviate 
from the expected value, with the deviation being stochastic and following a 
Poisson distribution of discrete, integer values. Dashed arrows represent the 
stochastic relationships linking one value on the expected scale to multiple 
possible realization of values on the data scale, with the thickness of each line 
representing the relative probability of reaching different data scale values. 
Figure modified from de Villemereuil et al. (2016).
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data scale, which in turn predicts the rate of increase in mean fit-
ness across generations due to selection. We confirm that the rate 
of adaptation is predicted by exp(σ2

A(l))− 1 and approximated by 
σ2
A(w) = σ2

A(l). In contrast, we also illustrate how the heritability of 
fitness on the data scale is not a good measure of the rate of adap-
tation. Second, we compare the performance of animal models of 
the simulated log-normal fitness data for the estimation of additive 
genetic variance in relative fitness. Although the heritability of fitness 
does not figure directly in the mechanics of evolutionary adapta-
tion, it remains an intuitive representation of the amount of genetic 
variability (in a strictly limited sense, Hansen et al. 2011) that has 
a wide appeal. We therefore also consider how well heritability of 
relative fitness is estimated by the different empirical modeling op-
tions. Finally, we consider previous empirical estimates of σ2

A(w) in 
the light of our results and discuss what is known about the rate of 
adaptation in natural populations.

Methods

We used individual-based simulations to generate fitness data of 
known properties across several generations. Individual-based simu-
lations let us model individual fitness and population dynamics, and 
therefore allow us to link the quantitative genetics of fitness to the 
dynamics of population growth rate. This provides an intuitive link 
between the adaptive process and population dynamics and also lets 
us confirm the analog of the fundamental theorem for log-normal 
fitness (Morrissey and Bonnet 2019).

First, we simulated data using our chosen values for additive gen-
etic and environment variance in fitness, assuming fitness follows a 
log-normal distribution. Simulations were performed in an enhanced 
version of the C++ program Volator (Bonnet and Postma 2018). From 
the simulations, we extracted realized breeding values, environmental 
values, and hence phenotypes for individual fitness, parent–offspring 
relationships between individuals (i.e., pedigrees), and population size 
through time. From these, we could confirm and illustrate the relation-
ship between the fundamental parameters of additive genetic variance, 
environmental variance, and heritability (we mean “narrow-sense” 
heritability, here and throughout in this publication) in fitness on dif-
ferent scales, and the rate of increase in mean fitness.

In a second step, we used the individual-fitness data and pedi-
grees to fit animal models and compare the input simulation param-
eter values to the parameters estimated by animal models. We did 
this using either Poisson or Gaussian fitness distributions.

Simulations and Theoretical Expectations

Life-Cycle and Fitness Model
We simulated nonoverlapping generations, with each generation 
equivalent to 1 time step (or year). A year starts with adult individ-
uals only, males and females. Adults reproduce in a 2-sex panmictic 
way and then die. Their offspring, born with an even sex ratio, then 
all recruit as reproducing adults for the next year.

We model a single trait, latent-scale reproductive success (l), 
which is also the latent-scale fitness in our model (because we do 
not simulate other fitness components). The trait follows the infini-
tesimal quantitative genetic model (Fisher 1918; Barton et al. 2017; 
Walsh and Lynch 2018, chapter 24) with additive effects of genes 
and the environment on a latent scale. Breeding values are trans-
mitted to the progeny as the mean breeding value of parents plus a 
Mendelian segregation variance equal to half the simulated additive 
genetic variances.

For an individual i,

li = µ+ ai + ei,

where μ is a population mean for l, a is the latent breeding value, 
and e is the latent environmental deviation (which we assume is due 
to the combined action of a large number of plastic responses and 
developmental noise). a and e follow a multivariate normal distri-
bution with means equal to zero, variances equal to σ2

A(l) and σ2
E(l)

, and zero covariance between them; note that each of them con-
tribute “overdispersion” to the distribution of fitness, as they ultim-
ately generate variance on the data over and above that due to the 
random Poisson process. Table 1 summarizes the definitions of the 
main parameters. We keep σ2

A(l) constant across generations, fol-
lowing the infinitesimal model, which assumes that genetic variation 
in the trait of interest is due to a large number of genetic loci, so that 
any response to selection has a negligible effect on allele frequencies 
and on the total genetic variance (Barton et al. 2017). σ2

E(l) is also 
constant across generations.

Realized reproductive success on the data scale (W, Figure 1 
bottom row) is simulated as an overdispersed Poisson process gen-
erated by a Poisson random draw with heterogeneous expectation: 
Wi = P(exp(li)) where exp(li) is the exponential of li and the ex-
pected reproductive success for individual i on the expected data 
scale (see Figure 1 for an illustration of the 3 scales).

Fisher’s FTNS itself does not make stringent assumptions (Grafen 
2018), but assumptions are necessary to directly observe the theorem 
from population dynamics as we do here. Indeed, Fisher’s theorem 

Table 1.  Definition of the main parameters and the scales on which they are expressed

Symbol Scale Meaning

l Latent Absolute fitness on the latent scale
exp(1) Expected Exponential of l, and absolute fitness on the expected scale
W Data Absolute fitness on the data scale
W̄ Data Mean W in a given generation
W̄0 Data Mean W in the first generation
w Data Relative fitness on the data scale (W/W̄)

σ2
A(l) Latent Latent-scale additive genetic variance in fitness

σ2
E(l) Latent Latent-scale environmental variance in fitness, also the amount of nongenetic overdispersion

σ2
A(w) Data Additive genetic variance in relative fitness on the data scale

σ2
G(w) Data Total genetic variance in relative fitness on the data scale, generated by latent-scale additive genetic variance σ2

A(l)
a

The 3 different scales are illustrated in Figure 1.
aNote that σ2

G excludes contributions from any nonadditive genetic variance on the latent scale, as we do not consider these here.
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relates to the part of change in mean fitness that is due to selection, 
but other evolutionary forces could change mean fitness too. On the 
latent scale, that is, for l, we assume no other evolutionary force than 
selection and genetic drift are present, so that on average Fisher’s 
theorem can be observed directly from changes in mean fitness, 
without having to isolate the independent role of selection. We con-
sider nonoverlapping generations because overlapping generations 
can influence the rate of response to selection (which is adaptation 
when the trait responding to selection is fitness) in a population 
(Hill 1974). We also, again for simplicity, assume no competition, 
no frequency or density dependence, no changes in the mean envir-
onmental values of phenotypic variation, no gene-by-environment 
interactions, no mutations, and no immigration. Despite these as-
sumptions, inheritance distortion appears as one more evolutionary 
force when considering the data scale rather than the latent scale 
and must be accounted for to predict the change in data-scale mean 
fitness across generations (see below).

Furthermore, again for simplicity, we consider only genetic vari-
ance in fitness in females (following equations presented below). 
Having determined individual females’ reproductive success ac-
cording to the variation in fitness, paternities are assigned randomly 
for each offspring. Thus, male reproductive success varies entirely 
stochastically, but note that males still carry and transmit breeding 
values for the trait of female fitness.

Simulation Parameters
We started simulations with 100 females and 100 males, and an ex-
pected initial population growth rate of λ0 = 0.96. Population size 
was not regulated (i.e., fitness was density-independent), and the ex-
pected population growth rate, therefore, tended to increase in the 
presence of additive genetic variance in fitness. We simulated 6–11 
time steps (“years” thereafter), reducing the number of years for 
scenarios with high additive genetic variance in fitness, because the 
population growth was very fast and simulations became computa-
tionally demanding with large σ2

A(l).
We simulated σ2

A(l) with values {0, 0.01, 0.05, 0.1, 0.3}, and σ2
E(l) 

with values {0, 0.1, 0.5}. For each of the 15 combinations of σ2
A(l) 

and σ2
E(l) values, we simulated 100 data sets. For each latent pheno-

typic variance (σ2
P(l) = σ2

A(l) + σ2
E(l)), we altered the latent mean 

fitness, so that the initially expected data scale mean fitness was al-
ways W̄0 = 1.92 (corresponding to λ0 = 0.96). Some distributions 
produced by the combinations of latent means and variances are 
shown in Supplementary Figure 2.

We compared the realized parameters in the simulated data 
sets with the original simulated values. The realized variance in 
simulated breeding values for fitness on the latent Poisson scale 
matched the pre-set values for all 3 levels of environmental variance 
(Supplementary Figure 1).

Step 1: Calculating Genetic Variances and Rate of 
Adaptation on the Data Scale
Conveniently, the additive genetic variance in absolute fitness on 
the latent scale is exactly equivalent to the additive genetic variance 
in relative fitness on the data scale (σ2

A(l) = σ2
A(w)) in a log-link 

GLAM (deduced from equation 7 in Morrissey (2015). However, 
this quantity does not perfectly predict changes in mean fitness 
on the data scale when fitness is log-normal. This is because the 
curvature of the exponential transforms some of the additive gen-
etic variance on the latent scale into nonadditive genetic variance 
on the data scale. To put it simply, on the latent scale, the breeding 

value of an individual is on average the mean of its parents’ breeding 
values on the latent scale, but this expectation does not survive the 
exponential-transformation. The phenotype corresponding to an 
offspring’s expected breeding value on the latent scale is larger than 
the mean of its parents’ expected phenotypes. Therefore, mean fit-
ness on the data-scale increases faster than σ2

A(w), specifically at a 
rate of exp(σ2

A(l))− 1 (Morrissey and Bonnet 2019). Incidentally, 
exp(σ2

A(l))− 1 happens to be the genetic variance for relative fitness 
(σ2

G(w); on the data scale) that originates from latent additive genetic 
variance in the absence of nonadditive variance on the latent scale 
(Morrissey and Bonnet 2019).

In our simulations, for every data set, we calculated the realized 
σ2
G(w) across generations as the variance in the individual geno-

typic values (for an individual i, its data-scale genotypic value for 
W is exp(µ+ ai + σ2

E(l)/2), see Morrissey and Bonnet 2019). We 
measured realized adaptation using population growth rates. At 
a given time t with a population size Nt, the population growth 

rate is λt =
Nt+1

Nt
. The rate of adaptation is calculated as λt+1−λt

λt

. This is equivalent to the relative change in mean individual fit-

ness W̄t+1−W̄t

W̄t
 because only one fitness component is modeled, and 

generations are nonoverlapping. Therefore, we expect on average 
λt+1−λt

λt
= exp(σ2

A(l))− 1 at any time t. Because in our simulations 

only females express genetic variation in fitness, we expected the in-
crease in population growth rate to be half that predicted by the 
equations above.

Step 2: Statistical Estimation From Simulated Data

Animal Models
We used animal models (Henderson 1950; Kruuk 2004) to estimate 
σ2
A(l), σ

2
E(l), and derived parameters from simulated fitness and pedi-

gree data. For each data set, we fitted 1) a linear animal model with 
a Gaussian error structure and 2)  a generalized animal model as-
suming an overdispersed Poisson distribution and a logarithmic link 
function, with the response variable of absolute fitness in both cases. 
Each data set included at least 800 females, across 5–10 generations, 
for data sets simulated with σ2

A(l) = 0. More females were included 
with increasing values of σ2

A(l) because adaptation caused the popu-
lation sizes to increase across generations. We used a maximum of 
3000 females for each data set (selecting the first 3000 first females 
born in the population). The analysis involved only female pheno-
types (as males do not express phenotypes for the trait, see above), 
but used the full pedigree to calculate the relatedness matrix.

We fitted models in MCMCglmm, an R package that by default 
includes an additive overdispersion parameter in Poisson models 
(Hadfield 2010). We extracted the posterior distributions of the es-
timates of the intercept, additive genetic variance, and residual (en-
vironmental) variance. In the case of the Poisson models, these are 
direct estimates of the simulation parameters σ2

A(l), σ
2
E(l), and μ; as 

outlined above, the estimate of σ2
A(l) is also an estimator of σ2

A(w) 
(Morrissey 2015; de Villemereuil et al. 2016). Transformations back 
to the data scale were performed on the posterior distribution using 
the R package QGglmm (de Villemereuil et  al. 2016), to generate 
posterior distributions of data scale σ2

A(w) and hence also of data-
scale narrow-sense heritability (h2). In the case of Gaussian models, 
we divided the estimated additive genetic variance in absolute fitness 
by the square of the mean fitness in the first generation (using the 
square of the estimated intercept gave qualitatively identical results) 
σ2
A(W)/W̄2

0 to obtain an estimator of σ2
A(w). Indeed, animal models 
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estimate genetic parameters relative to a base population, which in 
our case exactly matches the first generation. Therefore, the estimate 
of σ2

A(W) is for the first generation and the conversion to σ2
A(w) must 

use mean fitness in the first generation. Note however that in our 
simulations σ2

A(l), and hence σ2
A(w), are constant across generations, 

which therefore requires σ2
A(W) to increase at the same rate as W̄2

. As a consequence, the Gaussian estimate of σ2
A(W) is valid for the 

first generation only, but we expect the estimate of σ2
A(w) to be valid 

for any generation.
We used MCMCglmm’s default inverse gamma priors with shape 

and rate parameters both equal to 0.001 (equivalent to a variance 
and degree of belief equal to 1 and 0.002, respectively). We ran 
models for 130 000 Markov chain Monte Carlo iterations, with a 
burn-in of 30 000 and thinning of 100. Visual inspection of a subset 
of models suggested that a stationary sampling distribution was al-
ways reached before the end of the burn-in.

Comparison Between Simulated and Estimated 
Parameter Values
We extracted the modes and means of the posterior distributions for 
Gaussian and for Poisson animal models for each simulated data set 
and plotted them against the simulated parameter values. However, 
although this approach provides simple visualization, it does not 
represent estimation performance fully, as it considers only point 
estimates and no measure of uncertainty. To address this, we there-
fore also considered coverage and root mean squared error (RMSE) 
to measure the quality of the estimators of σ2

A(w). For a given set 
of parameters, coverage was calculated as the proportion of models 
having a 95% highest probability density credibility interval con-
taining the true value. We did not consider coverage for scenarios 

simulated with σ2
A(l) = 0 because credibility intervals cannot con-

tain exactly zero for variance components (although in practice they 
might due to arbitrary rounding).

Results

Theoretical Expectations
We start by comparing the observed values of data-scale genetic 
variance, and also rates of population growth, with the expectations 
based on simulated levels of latent-scale additive genetic variance. 
The additive genetic variance in relative fitness on the data scale 
σ2
A(w), calculated with QGglmm, was, as expected, exactly equal 

to σ2
A(l). The total genetic variance in relative fitness on the data 

scale σ2
G(w) calculated from the simulated breeding values matched 

the theoretical expectation of exp(σ2
A(l))− 1 (blue lines in Figure 2). 

At lower values of σ2
A(l), σ

2
G(w) was also close to σ2

A(w) (which is 
equal to σ2

A(l)), but it was visibly larger at larger values of σ2
A(l) (red 

lines in Figure 2). The environmental variance σ2
E(l), which generates 

overdispersion of the distribution over and above that due to latent 
genetic differences, had no apparent effect on either the expectation 
or the spread of the realized values. However, there was considerable 
spread in the realized values for σ2

G(w) for the largest simulated σ2
A(l) 

(Figure 2A).
The expectation exp(σ2

A(l))− 1 (blue lines) was also matched 
by the observed rate of increase in mean fitness, measured as the 
proportional change in population growth rates (Figure 2B; note 
that demographic stochasticity explains the occurrence of negative 
values). There was a large spread of realized changes in population 
growth rate, and the spread appeared to increase with environmental 
variance within each level of simulated σ2

A(l) (Figure 2B). However, 
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Figure 2.  Comparison of realized measures of adaptation in simulations with theoretical expectation: (A) realized values of total genetic variance in data-scale 
relative fitness calculated from simulated breeding values, and (B) relative change in population growth rate. The x axis shows increasing levels of latent-scale 
additive genetic variance, σ2

A(l); note that, in both (A) and (B), the break reflects different y axis scales for lower (0, 0.01, and 0.05) versus higher (0.1, 0.3) values 
of σ2

A(l). The differentially shaded boxes show increasing levels of latent-scale environmental variance, σ2
E(l). Posterior modes were used as point estimates. The 

box-plots show the percentiles 0.025, 0.25, 0.5, 0.75, and 0.975, and outliers from the posterior modes of the 100 simulated data sets. The red lines indicate the 
data-scale additive genetic variance in relative fitness: σ2

A(w) = σ2
A(l) in (A) or σ2

A(w)/2 = σ2
A(l)/2 in (B). The blue lines indicate the theoretical expectation for the 

proportional rate of increase in mean fitness on the data scale: exp(σ2
A(l))− 1 (for A) or exp(σ2

A(l)/2)− 1 (for B). Division by the factor of 2 in (B) reflects the fact 
that only females express genetic variance in fitness, so expected rates of adaptation need to be halved.
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in general, the simulations support the prediction of the analog of 
the FTNS, that is, the rate of increase in population growth rate 
across generations is expected to be exp(σ2

A(l))− 1.
In general, the realized values of data-scale heritability did 

not match the expected rate of adaptation (exp(σ2
A(l))− 1) well 

(Supplementary Figure 3). The exception was when heritability was 0 
when σ2

A(l) = 0, which was the only case where heritability matched 
the rate of adaptation (which was zero in that case). Otherwise, with 
any positive value of σ2

A(l), latent-scale heritability was always 1 in 
the absence of environmental variance (σ2

E(l) = 0) and decreased 
with increasing σ2

E(l) > 0. For instance, for σ2
A(l) = 0.1, latent-

scale heritability can be 1 (σ2
E(l) = 0), 0.5 (σ2

E(l) = 0.1), or 0.17 
(σ2

E(l) = 0.5) (Figure 4B). However, the theoretical rate of adapta-
tion (exp(σ2

A(l))− 1) is independent of σ2
E(l) and, in the previous ex-

ample, is approximately 0.105 (to be divided by 2 to recover the true 
rate of increase in mean fitness, given that we consider only females 
here). The results thus underline the expectation that the data-scale 
heritability does not provide a decent estimate of the expected rate 
of adaptation.

Animal Model Estimation
Additive Genetic Variance
Our second set of analyses compared estimates returned from 
animal models of the simulated data with the original simulated 
parameter values. As expected from Morrissey (2015), for Poisson 
models QGglmm converted an amount of additive genetic variance 
for relative fitness on the data scale exactly equal to the estimate of 
the additive genetic variance for absolute fitness on the latent scale 
(σ2

A(w) = σ2
A(l)). The back-transformation is mathematically trivial.

Gaussian animal models estimated σ2
A(w) close to the expected 

values of σ2
A(l) for all simulated values, except σ2

A(l) = 0.3 where 
they overestimated σ2

A(w) by a factor 2–4. Estimates were slightly 
biased downward for σ2

A(l) = 0.01 and 0.1 (Figure 3). Gaussian 
animal model estimates were dependent on environmental variance, 

so that the estimate of σ2
A(w) decreased with increasing σ2

E(l) (Figure 
3). Poisson models estimated σ2

A(w) close to the expected values of 
σ2
A(l) for all simulated values, but were slightly biased downward for 

σ2
A(l) of 0.01 and 0.05. The estimates from Poisson animal models 

were on average not affected by σ2
E(l), but they became more vari-

able with increasing values of σ2
E(l) (Figure 3). Both Gaussian and 

Poisson models showed an upward bias for σ2
A(l) = 0.

Next, we compared the performance of the different types of 
models in terms of coverage and uncertainty. RMSE was small and 
almost independent of the simulated values for Poisson models, ex-
cept for a slight increase at σ2

A(l) = 0.05. In contrast, for Gaussian 
models, RMSE increased with increasing σ2

A(l) up to a maximum 
of 21, 3 orders of magnitude above the maximum RMSE of 
Poisson models (Supplementary Figure 4). For σ2

A(l) = 0.01, both 
Poisson and Gaussian models had mediocre coverage, of about 0.6 
(Supplementary Figure 5), although Poisson performed slightly better. 
For larger simulated values, Poisson models clearly did better than 
Gaussian models, with their 95% confidence interval (CI) containing 
the simulated value in about 95% of the data sets, and their coverage 
was little affected by the amount of nongenetic overdispersion 
(σ2

E(l)). In contrast, the Gaussian models had coverage well below 
95%, especially for σ2

A(l) = 0.3. In addition, coverage was affected 
by nongenetic overdispersion (Supplementary Figure 5, especially 
apparent at σ2

A(l) = 0.1) in a counter-intuitive way: with Gaussian 
models, the estimation apparently improved as the data become 
noisier, being least bad at σ2

E(l) = 0.5). Extrapolating from this trend, 
one might expect the estimation to get worse again as σ2

E(l) increases 
beyond the simulated values.

Heritability Estimates
The true narrow-sense heritability on the latent scale is 1 when 
σ2
E(l) = 0 and σ2

A(l) > 0, and decreases with increasing values of 
σ2
E(l). High heritabilities on the latent scale translate to medium 
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Figure 3.  Modes of the posterior distribution of additive genetic variance in data-scale relative fitness σ2
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values on the data scale (maximum 0.37 in our simulations, 
Figure 4) due to the stochasticity added by the Poisson process. 
Poisson GLAMs gave correct estimates of latent heritability for 
the higher values of σ2

A(l), but were less reliable for the lower 
values (Figure 4B). On the data scale, Poisson animal models re-
turned accurate estimates of the data-scale heritability or slightly 
underestimated it (Figure 4C). The Gaussian animal models gave 
estimates close to the expected values in all cases, except for 
scenarios with high σ2

A(l) and low σ2
E(l) (Figure 4A).

Discussion

In this article, we have used simulations to test the relationship 
between levels of genetic variance in fitness and rates of popu-
lation adaptation and growth when individual fitness follows a 
log-normal distribution. Our results confirmed the new theoret-
ical result (Morrissey and Bonnet 2019) that for log-normal fit-
ness, the proportional increase in mean (absolute or relative to the 
previous generation) fitness on the data scale is predicted by the 
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Figure 4.  Narrow-sense heritability of fitness estimated from animal models (distribution of posterior modes, reddish box-plots), compared with theoretical 
expectation (blue lines). (A) Data-scale heritability estimated from a Gaussian animal model; (B) latent-scale heritability estimated from a Poisson animal model; 
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latent fitness (σ2
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QGglmm using the simulated values for latent variance components.
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exponential of the additive genetic variance of latent fitness, minus 
one (exp(σ2

A(l))− 1). The expression exp(σ2
A(l))− 1 captures both 

the pure effect of adaptation, that is, Fisher’s FTNS, and the inherit-
ance distortion due to the nonlinear genotype–phenotype map here 
(for a more detailed explanation, see Morrissey and Bonnet (2019). 
For small values of latent additive genetic variance, the increase in 
fitness is well approximated by σ2

A(w) (or equivalently σ2
A(l)), but the 

conversion to the exact expectation is trivial (exp(σ2
A(l))− 1) and 

should be used. In addition, the analysis of our simulations has illus-
trated the fact that narrow-sense heritability, on either scale, is not 
a useful measure of adaptation. We confirmed that animal models 
assuming an overdispersed Poisson distribution for fitness estimate 
σ2
A(w) well. With the same data, Gaussian models gave reasonable 

point estimates for lower values of σ2
A(w), but estimation was poor 

for larger values.

What Parameter Is Relevant to Predict Adaptation?
Our results illustrate which parameters are or are not relevant to 
assessing the rate of adaptation in a population. It has been ar-
gued that the highly stochastic nature of variation in individual 
fitness means that 1) natural selection could rarely manifest itself 
in small wild populations, 2) the heritability of fitness would gen-
erally be small, and therefore that 3) adaptive evolution should be 
limited and its study obscured by environmental variation (Orzack 
et al. 2011; Steiner and Tuljapurkar 2012; Hamel et al. 2018). The 
first conclusion is incorrect, as well-specified models have identi-
fied natural selection in numerous small populations (Kingsolver 
et  al. 2001; Kingsolver and Diamond 2011; Bonnet and Postma 
2016; Authier et  al. 2017). In contrast, the second point is sup-
ported by data (Gustafsson 1986; Mousseau and Roff 1987; Kruuk 
et al. 2000; Teplitsky et al. 2009; Postma 2014; McFarlane et al. 
2014) and by our simulations. However, the low heritability of fit-
ness is typically driven by high levels of environmental variance 
(Price and Schluter 1991). In the case of a Poisson distribution, 

even a perfect heritability of 1 for values of the expected scale (see 
Figure 1) does not translate into a large heritability on the ob-
served scale of the data (Figure 5) because the Poisson process adds 
stochasticity on top of the expected values (de Villemereuil et  al. 
2016). To reillustrate this point, we computed theoretical data-scale 
heritabilities using QGglmm and its relationship with adaptation 
(Figure 5). Note that it is theoretically possible for heritability to 
decrease as σ2

A(l) increases (for a given value of σ2
E(l)). This is pos-

sible because increased latent genetic variance increases the mean 
on the expected data scale, which then generates increased Poisson 
variance on the data scale. Thus, somewhat counter-intuitively, 
data-scale heritability for σ2

A(l) = 2 will be lower than for σ2
A(l) = 1 

(Figure 5), although the inversion occurs only for extremely high 
and unrealistic variance components. Thus, both these theoretical 
arguments and the simulation results above both illustrate how her-
itability of fitness is not a good measure of adaptive evolution. As a 
result, the third point (lack of adaptation) above cannot be deduced 
from the second point (low heritability of fitness). Rather than the 
heritability, it is the additive genetic variance in fitness that controls 
adaptive evolution under the predictions of Fisher’s FTNS (Fisher 
1930; Queller 2017; Morrissey and Bonnet 2019).

In the specific case of log-normal fitness, the expected rate of 
increase in fitness is exp(σ2

A(l))− 1 (Morrissey and Bonnet 2019), 
which combines strict adaptation with the effects of inheritance dis-
tortion due to the nonlinearity of breeding values. This result does 
not invalidate Fisher’s FTNS in the case of log-normal fitness. The 
FTNS is still appropriate to measure the increase in mean fitness 
within a generation, or the pure effect of adaptation between gen-
erations, as σ2

A(w). However, with log-normal fitness, adaptation 
comes with an inevitable supplementary increase in mean fitness due 
to inheritance distortion. Conceptually this is an opposite analog of 
the deterioration of genetic effects (which Fisher confusingly termed 
“environmental” deterioration, although it is in part the result of 
change in allele frequencies and indirect genetic effects, rather than 
the abiotic environment) where the phenotypic direct effect of gen-
etic change is impeded by the change in the genetic “environment” 
across generations (Price 1972b). Here the direct effect of genetic 
change is enhanced by change in the interactive effects of other 
genes: we can speculate Fisher may have called it “environmental 
amelioration.” This supplementary increase is not strictly speaking 
an effect of genetic adaptation but is intimately related to it and 
must be accounted for an accurate prediction of change in mean 
fitness. However, for small values of latent additive genetic variance 
(σ2

A(l) << 1), the supplementary increase will not be substantial: 
σ2
A(l) is a reasonable approximation of the rate of increase in mean 

fitness because exp(σ2
A(l)− 1) tends toward σ2

A(l) as σ2
A(l) tends to-

ward zero (e.g., the difference is below 5% of exp(σ2
A(l)− 1) when 

σ2
A(l) < 0.1).

Implications for Empirical Studies
According to the literature search in Hendry et  al. (2018), to date, 
there are 22 studies estimating σ2

A(w) from good measures of lifetime 
fitness in wild plant and animal populations. Estimates range from 
0 to 0.85, with 89% below 0.2, and 77% below 0.1. Most of these 
estimates were produced by Gaussian models (animal models, regres-
sions, or structural equation models), while lifetime fitness measures 
are generally unlikely to have followed Gaussian distributions (al-
though some studies used Gaussian models after log transformation of 
fitness data; e.g., Kruuk et al. 2000). The reliability of these Gaussian 
models using log-transformed data remains to be explored, but could 
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Figure 5.  Realized heritability on the data scale against latent environmental 
variances (σ2

E(l)) for several values of latent additive genetic variance (σ2
A(l))

. The theoretical rate of adaptation is a function of σ2
A(l) only, whereas 

heritability depends on both σ2
A(l) and σ2

E(l). Data-scale heritabilities were 
computed by QGglmm, assuming a latent intercept of log(2). σ2

A(l) values 
above 0.3 are biologically unlikely, because they correspond to extremely 
fast rates of adaptation, but illustrate how it is theoretically possible for 
heritability to decrease as σ2

A(l) increases while holding σ2
E(l) constant. This 

is possible because increased latent genetic variance increases the mean on 
the expected data scale, which then generates increased Poisson variance on 
the data scale. The gray dashed line highlights that a data-scale heritability of 
0.08 could correspond to any value of σ2

A(l) between 0.05 and 2.
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be analyzed using the framework proposed in de Villemereuil et al. 
(2016) and de Villemereuil (2018). Hendry et al.’s review did iden-
tify 4 studies (Milot et al. 2011; McFarlane et al. 2014, 2015; Wolak 
et  al. 2018) estimating additive genetic variance in absolute fitness 
or its heritability using Poisson models. However, only one of those 
reported the data-scale variance in absolute fitness (σ2

A(W)) (Wolak 
et al. 2018) and none treated their estimates of σ2

A(l) as estimates of 
the data-scale additive genetic variance in relative fitness (σ2

A(w)), pre-
sumably because it was not yet well known that σ2

A(l) = σ2
A(w).

We found that Gaussian models have suboptimal estimation 
properties for σ2

A(w) when fitness follows an overdispersed Poisson 
distribution. Thus, Gaussian estimates can be biased, in complicated 
ways that depends on the level of overdispersion (σ2

A(w) and σ2
E(w)) 

in the data (Figure 3); CIs generally do not contain the parameter 
value for large simulated σ2

A(w) (Supplementary Figure 5); and es-
timates come with considerable variance, as evidenced by the high 
RMSE (Supplementary Figure 4). Estimation problems probably 
arise because of the skewness of the fitness data distribution and 
of the breeding values. As we simulated fitness data with a constant 
mean, increasing overdispersion leads to an increase in the propor-
tion of zeroes and of high values (Supplementary Figure 2), which 
results in increasingly deviation from the bell shape of a Gaussian 
distribution. However, these problems were substantial only for 
“large” values of σ2

A(w) (and hence “large” skewness in breeding 
values) and may not meaningfully hamper biological interpretation 
when considering “small” σ2

A(w) values. In our study, Gaussian 
models were qualitatively correct, that is, they detected the presence 
of genetic variance when the simulated σ2

A(w) > 0 and did not es-
timate large genetic variance when none was simulated: the largest 
point estimate was 0.029 and 95% of point estimates were below 
0.01 (the next lowest simulated value). Besides, estimation was rea-
sonable for small parameter values (Supplementary Figures 4 and 5). 
What should be considered “large” or “small” σ2

A(w) then?
Any threshold between “small” and “large” will be arbitrary. 

Nevertheless, a value of σ2
A(w) > 0.1 is clearly large because it sug-

gests an increase in mean fitness of 10% due to adaptation within a 
generation. If such increase was sustained for a few generations and 
not counterbalanced by changes in the environment (in the very broad 
sense of Fisher’s “environmental” deterioration), it would lead to an 
explosive population increase. Published estimates, although poten-
tially not perfectly reliable, suggest that most values are below 0.1 
and values of σ2

A(w) > 0.2 are rare (Hendry et al. 2018). Therefore, 
our results suggest that cautious optimism is reasonable when con-
sidering past and future estimates based on Gaussian models of un-
transformed fitness measures. Gaussian models appear fairly reliable 
for values that are small and likely to actually exist (for instance 
σ2
A(w) < 0.1). Nevertheless, the more accurate and precise Poisson 

models using a log-link should be preferred whenever data are as-
sumed to follow a Poisson or overdispersed Poisson distribution.

Indeed, we have illustrated here how, when fitness can be described 
with a Poisson distribution, all the tools are now available to fit quan-
titative genetic models and extract meaningful estimates of compo-
nents of variance (de Villemereuil et al. 2016; Morrissey and Bonnet 
2019). The interpretation of variance components from GLAMs 
(and other generalized linear mixed models) generally requires back-
transformations involving integrations. These back-transformations 
are now supported by R packages (de Villemereuil et al. 2016), but 
these may still be troublesome or intimidating. However, in the case 
of Poisson animal models, the latent estimate of additive genetic 
variance is exactly the additive genetic variance for relative fitness 

(σ2
A(w) = σ2

A(l)), meaning that, conveniently, back-transformation is 
unnecessary and the latent-scale model estimates are directly mean-
ingful. In addition, the expected increase in mean fitness due to adap-
tation and to inheritance distortion is simply exp(σ2

A(l))− 1 and does 
not require complicated back-transformations either. We hope that the 
relative simplicity of these relationships will encourage researchers to 
adopt the methods more widely.

Nevertheless, our results also illustrate some practical difficul-
ties with animal model estimation. Our Poisson models matched the 
simulation data-generating process and could have been expected to 
have ideal statistical properties here. However, the Poisson models 
did not perform ideally. First, for simulated σ2

A(l) = 0 estimates of 
σ2
A(ω) were biased upward, as is always the case for variance com-

ponents in any mixed models (see for instance Bolker et al. 2009). 
This upward bias is obvious only for σ2

A(l) = 0 but must necessarily 
exist for small non-null values (although it may be masked by an 
opposite bias). Second, for non-null small simulated σ2

A(l), estimates 
of σ2

A(w) were slightly biased downward (Figure 3B), showed a small 
peak in RMSE (Supplementary Figure 4) and had mediocre coverage 
(Supplementary Figure 5). These suboptimal properties could sug-
gest an influence of the prior distribution on estimation. The prior 
used here is very dense close to zero and could potentially pull 
down the posterior distribution for small parameter values (Gelman 
2006). Nevertheless, preliminary re-analyses of the same data sets 
with restricted maximum likelihood showed the same bias (data not 
shown), suggesting the prior is not to blame here. Instead, bias could 
originate from a deeper boundary effect, that is, the tendency for the 
likelihood distribution to stick close to the value of 0 when the true 
value of a variance parameter is small and the sample size is limited. 
These issues may be particularly relevant to studies of the genetic 
basis of variation in fitness; as small values of genetic variance in 
fitness are expected, models are likely to frequently encounter the 
boundary area where both positive and negative biases may appear. 
This is a topic that requires further detailed investigation.

Limitations and Future Directions
We used an overdispersed Poisson model to simulate multigener-
ational fitness data and to fit animal models to them. Poisson animal 
models performed well, not surprisingly because they were ideally spe-
cified for our simulated data (Burnham and Anderson 2002, p. 158). 
In nature, real fitness distributions can follow Poisson distributions 
or overdispersed Poisson distributions (as assumed in our work; e.g., 
Kruuk et al. 2014b), but may also often deviate from them (e.g., Reid 
et  al. 2011). In particular, fitness distributions may be zero-inflated 
compared to an overdispersed Poisson distribution. Standard Poisson 
animal models may still be able to fit zero-inflated data reasonably 
well (e.g., Reid et al. 2011; Kruuk et al. 2014b), but it is unclear how 
well they would estimate quantitative genetic parameters in that case. 
Thus, as a further extension, zero-inflated overdispersed Poisson 
animal models could be used to fit even more realistic fitness distri-
butions. However, zero-inflated, or hurdle, models are mixtures of 2 
distributions and output 2 sets of parameter estimates on 2 different 
scales (Atkins et al. 2013). Future work will be needed to focus on 
clarifying how to convert estimates from the 2 parts of zero-inflated 
models into a single biologically meaningful estimate of genetic vari-
ance or into predictions of changes in mean fitness.

Supplementary Material
Supplementary results are available at Journal of Heredity online.

Journal of Heredity, 2019, Vol. XX, No. XX� 11
D

ow
nloaded from

 https://academ
ic.oup.com

/jhered/advance-article-abstract/doi/10.1093/jhered/esz018/5523732 by D
a-C

ollect C
hifley Library AN

U
C

 user on 01 July 2019

http://academic.oup.com/jhered/article-lookup/doi/10.1093/jhered/esz018#supplementary-data
http://academic.oup.com/jhered/article-lookup/doi/10.1093/jhered/esz018#supplementary-data
http://academic.oup.com/jhered/article-lookup/doi/10.1093/jhered/esz018#supplementary-data
http://academic.oup.com/jhered/article-lookup/doi/10.1093/jhered/esz018#supplementary-data
http://academic.oup.com/jhered/article-lookup/doi/10.1093/jhered/esz018#supplementary-data
http://academic.oup.com/jhered/article-lookup/doi/10.1093/jhered/esz018#supplementary-data
http://academic.oup.com/jhered/article-lookup/doi/10.1093/jhered/esz018#supplementary-data


Funding

This work was supported in part by a University Research Fellowship 
from the Royal Society (London) to M.M.

Acknowledgments
We thank Anne Bronikowski for the invitation to submit to the symposium 
issue on the Evolutionary Quantitative Genetics of Wild Populations; Pierre de 
Villemereuil, François Rousset, Simon Evans, and Erik Postma for insightful 
discussions; and anonymous referees for useful comments. We also thank the 
Australian National University Bioinformatics Consultancy for access to their 
Bioinformatics Development Cluster.

References
Asmussen MA. 1983. Density-dependent selection incorporating intraspecific 

competition. II. A diploid model. Genetics. 103:335–350.
Atkins DC, Baldwin SA, Zheng C, Gallop RJ, Neighbors C. 2013. A tutorial on 

count regression and zero-altered count models for longitudinal substance 
use data. Psychol Addict Behav. 27:166–177.

Authier  M, Aubry  LM, Cam  E. 2017. Wolf in sheep’s clothing: Model 
misspecification undermines tests of the neutral theory for life histories. 
Ecol Evol. 7:3348–3361.

Barton NH, Etheridge AM, Véber A. 2017. The infinitesimal model: definition, 
derivation, and implications. Theor Popul Biol. 118:50–73.

Bijma  P. 2010. Fisher’s fundamental theorem of inclusive fitness and the 
change in fitness due to natural selection when conspecifics interact. J Evol 
Biol. 23:194–206.

Bolker  BM, Brooks  ME, Clark  CJ, Geange  SW, Poulsen  JR, Stevens  MH, 
White  JS. 2009. Generalized linear mixed models: a practical guide for 
ecology and evolution. Trends Ecol Evol. 24:127–135.

Bonnet T, Postma E. 2016. Successful by chance? The power of mixed models 
and neutral simulations for the detection of individual fixed heterogeneity 
in fitness components. Am Nat. 187:60–74.

Bonnet T, Postma E. 2018. Fluctuating selection and its (elusive) evolutionary 
consequences in a wild rodent population. J Evol Biol. 31:572–586.

Burnham K, Anderson D. 2002. Model selection and multimodel inference. 
A practical information-theoretic approach. 2nd ed. New York: Springer.

Burt A. 1995. The evolution of fitness. Evolution. 49:1–8.
Charlesworth B. 1987. The heritability of fitness. In: Bradbury J, Andersson M, 

editors. Sexual selection: testing the alternatives. Chichester: Wiley. p. 21–40.
Clutton-Brock T, Sheldon BC. 2010. Individuals and populations: the role of 

long-term, individual-based studies of animals in ecology and evolutionary 
biology. Trends Ecol Evol. 25:562–573.

de Villemereuil P. 2018. Quantitative genetic methods depending on the nature 
of the phenotypic trait. Ann N Y Acad Sci. 1422:29–47.

de Villemereuil P, Gimenez O, Doligez B. 2013. Comparing parent–offspring 
regression with frequentist and Bayesian animal models to estimate her-
itability in wild populations: a simulation study for Gaussian and binary 
traits. Methods Ecol Evol. 4:260–275.

de  Villemereuil  P, Schielzeth  H, Nakagawa  S, Morrissey  M. 2016. General 
methods for evolutionary quantitative genetic inference from generalized 
mixed models. Genetics. 204:1281–1294.

Ewens WJ. 1989. An interpretation and proof of the fundamental theorem of 
natural selection. Theor Popul Biol. 36:167–180.

Fisher RA. 1918. The correlation between relatives on the supposition of Men-
delian inheritance. Trans R Soc Edinb. 52:399–433.

Fisher RA. 1930. The genetical theory of natural selection. 1st ed. Oxford: 
Clarendon Press.

Fisher DN, McAdam AG. 2019. Indirect genetic effects clarify how traits can 
evolve even when fitness does not. Evol Lett. 3:4–14. doi: 10.1002/evl3.98.

Gelman A. 2006. Prior distributions for variance parameters in hierarchical 
models. Bayesian Anal. 1:515–533.

Geyer CJ, Wagenius S, Shaw RG. 2007. Aster models for life history analysis. 
Biometrika. 94:415–426.

Gomulkiewicz R, Holt RD, Barfield M, Nuismer SL. 2010. Genetics, adapta-
tion, and invasion in harsh environments. Evol Appl. 3:97–108.

Grafen A. 2018. The left hand side of the fundamental theorem of natural se-
lection. J Theor Biol. 456:175–189.

Gustafsson L. 1986. Lifetime reproductive success and heritability: empirical 
support for Fisher’s fundamental theorem. Am Nat. 128:761–764.

Hadfield  JD. 2010 . Mcmc methods for multi-response generalized linear 
mixed models: the MCMCglmm R package. J Stat Soft. 33:1–22.

Hamel S, Gaillard JM, Yoccoz NG, Bassar RD, Bouwhuis S, Caswell H, Douhard M, 
Gangloff EJ, Gimenez O, Lee PC. 2018. General conclusion to the special issue 
Moving forward on individual heterogeneity. Oikos. 127:750–756.

Hansen TF, Pélabon, C, Houle, D. 2011. Heritability is not evolvability. Evol 
Biol. 38:258–277.

Henderson  CR. 1950. Estimation of genetic parameters. Ann Math Stat. 
21:309–310.

Hendry AP, Schoen DJ, Wolak ME, Reid JM. 2018. The contemporary evolu-
tion of fitness. Annu Rev Ecol Evol Syst. 49:457–476.

Heywood JS. 2005. An exact form of the breeder’s equation for the evolution 
of a quantitative trait under natural selection. Evolution. 59:2287–2298.

Hill  WG. 1974. Prediction and evaluation of response to selection with 
overlapping generations. Anim Prod. 18:117–139.

Jones JS. 1987. The heritability of fitness: bad news for ‘good genes’? Trends 
Ecol Evol. 2:35–38.

Kingsolver  JG, Diamond  SE. 2011. Phenotypic selection in natural popula-
tions: what limits directional selection? Am Nat. 177:346–357.

Kingsolver JG, Hoekstra HE, Hoekstra JM, Berrigan D, Vignieri SN, Hill CE, 
Hoang A, Gibert P, Beerli P. 2001. The strength of phenotypic selection in 
natural populations. Am Nat. 157:245–261.

Kruuk  LE. 2004. Estimating genetic parameters in natural populations 
using the “animal model”. Philos Trans R Soc Lond B Biol Sci. 
359:873–890.

Kruuk LEB, Charmentier A, Garant D. 2014a. The study of quantitative genetics 
in wild populations. In: Charmentier A, Garant D, Kruuk LEB, editors. Quan-
titative genetics in the wild. 1st ed, Oxford: Oxford University Press. p. 1–15.

Kruuk  LEB, Clutton-Brock  T, Pemberton  JM. 2014b. Case study: quanti-
tative genetics and sexual selection of weaponry in a wild ungulate. In: 
Charmentier A, Garant D, Kruuk LEB, editors. Quantitative genetics in 
the wild. 1st ed, Oxford: Oxford University Press. p. 160–176.

Kruuk LE, Clutton-Brock TH, Slate J, Pemberton JM, Brotherstone S, Guin-
ness FE. 2000. Heritability of fitness in a wild mammal population. Proc 
Natl Acad Sci USA. 97:698–703.

Lande R. 1979. Quantitative genetic analysis of multivariate evolution, ap-
plied to brain:body size allometry. Evolution. 33:402–416.

Lush J. 1937. Animal breeding plans. Ames (IA): Iowa State College Press.
Mair C, Stear M, Johnson P, Denwood M, Jimenez de Cisneros JP, Stefan T, 

Matthews L. 2015. A Bayesian generalized random regression model for 
estimating heritability using overdispersed count data. Genet Sel Evol. 
47:51.

McFarlane SE, Gorrell JC, Coltman DW, Humphries MM, Boutin S, McAdam AG. 
2014. Very low levels of direct additive genetic variance in fitness and fitness 
components in a red squirrel population. Ecol Evol. 4:1729–1738.

McFarlane  SE, Gorrell  JC, Coltman  DW, Humphries  MM, Boutin  S, 
McAdam AG. 2015. The nature of nurture in a wild mammal’s fitness. 
Proc Biol Sci. 282:20142422.

McPeek  MA. 2017. Evolutionary community ecology. Princeton (NJ): 
Princeton University Press.

Merilä J, Sheldon BC. 2000. Lifetime reproductive success and heritability in 
nature. Am Nat. 155:301–310.

Milot E, Mayer FM, Nussey DH, Boisvert M, Pelletier F, Réale D. 2011. Evi-
dence for evolution in response to natural selection in a contemporary 
human population. Proc Natl Acad Sci USA. 108:17040–17045.

Mitchell-Olds T, Shaw RG. 1987. Regression analysis of natural selection: stat-
istical inference and biological interpretation. Evolution. 41:1149–1161.

Morrissey MB. 2015. Evolutionary quantitative genetics of nonlinear develop-
mental systems. Evolution. 69:2050–2066.

Morrissey MB, Bonnet T. 2019. Analogues of the fundamental and secondary 
theorems of selection, assuming a log-normal distribution of expected fit-
ness. J Hered. (special issue).

Morrissey  MB, Kruuk  LE, Wilson  AJ. 2010. The danger of applying the 
breeder’s equation in observational studies of natural populations. J Evol 
Biol. 23:2277–2288.

12� Journal of Heredity, 2019, Vol. XX, No. XX
D

ow
nloaded from

 https://academ
ic.oup.com

/jhered/advance-article-abstract/doi/10.1093/jhered/esz018/5523732 by D
a-C

ollect C
hifley Library AN

U
C

 user on 01 July 2019



Mousseau TA, Roff DA. 1987. Natural selection and the heritability of fitness 
components. Heredity (Edinb). 59(Pt 2):181–197.

Orzack  SH, Steiner  UK, Tuljapurkar  S, Thompson  P. 2011. Static and dy-
namic expression of life history traits in the Northern Fulmar (Fulmarus 
glacialis). Oikos. 120:369–380.

Pelletier  F, Coltman  DW. 2018. Will human influences on evolutionary dy-
namics in the wild pervade the Anthropocene? BMC Biol. 16:7.

Postma E. 2014. Four decades of estimating heritabilities in wild verte-
brate populations: improved methods, more data, better estimates? 
In: Charmentier A., Garant D, Kruuk LEB, editors. Quantitative gen-
etics in the wild. 1st ed. Oxford: Oxford University Press. p. 16–33.

Price GR. 1970. Selection and covariance. Nature. 227:520–521.
Price GR. 1972a. Extension of covariance selection mathematics. Ann Hum 

Genet. 35:485–490.
Price GR. 1972b. Fisher’s ‘fundamental theorem’ made clear. Ann Hum Genet. 

36:129–140.
Price T, Schluter D. 1991. On the low heritability of life-history traits. Evolu-

tion. 45:853–861.
Queller DC. 2017. Fundamental theorems of evolution. Am Nat. 189:345–

353.
Reid JM, Arcese P, Sardell RJ, Keller LF. 2011. Additive genetic variance, herit-

ability, and inbreeding depression in male extra-pair reproductive success. 
Am Nat. 177:177–187.

Roff DA. 2001. The threshold model as a general purpose normalizing trans-
formation. Heredity (Edinb). 86:404–411.

Saccheri I, Hanski I. 2006. Natural selection and population dynamics. Trends 
Ecol Evol. 21:341–347.

Shaw RG, Shaw FH. 2014. Quantitative genetic study of the adaptive process. 
Heredity (Edinb). 112:13–20.

Steiner  UK, Tuljapurkar  S. 2012. Neutral theory for life histories and in-
dividual variability in fitness components. Proc Natl Acad Sci USA. 
109:4684–4689.

Teplitsky C, Mills JA, Yarrall JW, Merilä J. 2009. Heritability of fitness compo-
nents in a wild bird population. Evolution. 63:716–726.

van Vleck LD. 1972. Estimation of heritability of threshold characters. J Dairy 
Sci. 55:218–225.

Wagner GP. 2010. The measurement theory of fitness. Evolution. 64:1358–1376.
Walsh B, Lynch M. 2018. Evolution and selection of quantitative traits. Sun-

derland (MA): Sinauer Associates.
Wilson  AJ, Morrissey  MB, Adams  MJ, Walling  CA, Guinness  FE, 

Pemberton JM, Clutton-Brock TH, Kruuk LE. 2011. Indirect genetics ef-
fects and evolutionary constraint: an analysis of social dominance in red 
deer, Cervus elaphus. J Evol Biol. 24:772–783.

Wilson AJ, Réale D, Clements MN, Morrissey MM, Postma E, Walling CA, 
Kruuk LE, Nussey DH. 2010. An ecologist’s guide to the animal model. J 
Anim Ecol. 79:13–26.

Wolak  ME, Arcese  P, Keller  LF, Nietlisbach  P, Reid  JM. 2018. Sex-specific 
additive genetic variances and correlations for fitness in a song sparrow 
(Melospiza melodia) population subject to natural immigration and 
inbreeding. Evolution. 72:2057–2075.

Journal of Heredity, 2019, Vol. XX, No. XX� 13
D

ow
nloaded from

 https://academ
ic.oup.com

/jhered/advance-article-abstract/doi/10.1093/jhered/esz018/5523732 by D
a-C

ollect C
hifley Library AN

U
C

 user on 01 July 2019


