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Abstract

In natural populations, quantitative trait dynamics often do not appear to follow evolutionary

predictions. Despite abundant examples of natural selection acting on heritable traits, con-

clusive evidence for contemporary adaptive evolution remains rare for wild vertebrate popu-

lations, and phenotypic stasis seems to be the norm. This so-called “stasis paradox”

highlights our inability to predict evolutionary change, which is especially concerning within

the context of rapid anthropogenic environmental change. While the causes underlying the

stasis paradox are hotly debated, comprehensive attempts aiming at a resolution are lack-

ing. Here, we apply a quantitative genetic framework to individual-based long-term data for

a wild rodent population and show that despite a positive association between body mass

and fitness, there has been a genetic change towards lower body mass. The latter repre-

sents an adaptive response to viability selection favouring juveniles growing up to become

relatively small adults, i.e., with a low potential adult mass, which presumably complete their

development earlier. This selection is particularly strong towards the end of the snow-free

season, and it has intensified in recent years, coinciding which a change in snowfall pat-

terns. Importantly, neither the negative evolutionary change, nor the selective pressures

that drive it, are apparent on the phenotypic level, where they are masked by phenotypic

plasticity and a non causal (i.e., non genetic) positive association between body mass and

fitness, respectively. Estimating selection at the genetic level enabled us to uncover adap-

tive evolution in action and to identify the corresponding phenotypic selective pressure. We

thereby demonstrate that natural populations can show a rapid and adaptive evolutionary

response to a novel selective pressure, and that explicitly (quantitative) genetic models are

able to provide us with an understanding of the causes and consequences of selection that

is superior to purely phenotypic estimates of selection and evolutionary change.

PLOS Biology | DOI:10.1371/journal.pbio.1002592 January 26, 2017 1 / 21

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Bonnet T, Wandeler P, Camenisch G,

Postma E (2017) Bigger Is Fitter? Quantitative

Genetic Decomposition of Selection Reveals an

Adaptive Evolutionary Decline of Body Mass in a

Wild Rodent Population. PLoS Biol 15(1):

e1002592. doi:10.1371/journal.pbio.1002592

Academic Editor: Russell Bonduriansky, University

of New South Wales, AUSTRALIA

Received: July 1, 2016

Accepted: December 22, 2016

Published: January 26, 2017

Copyright: © 2017 Bonnet et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: The study was funded by a Swiss

National Science Foundation (http://www.snf.ch)

project grant (31003A_141110) awarded to EP.

The funders had no role in study design, data

collection and analysis, decision to publish, or

preparation of the manuscript.

Competing Interests: The authors have declared

that no competing interests exist.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.1002592&domain=pdf&date_stamp=2017-01-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.1002592&domain=pdf&date_stamp=2017-01-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.1002592&domain=pdf&date_stamp=2017-01-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.1002592&domain=pdf&date_stamp=2017-01-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.1002592&domain=pdf&date_stamp=2017-01-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.1002592&domain=pdf&date_stamp=2017-01-26
http://creativecommons.org/licenses/by/4.0/
http://www.snf.ch


Author Summary

Biologists struggle to demonstrate adaptive evolution in wild populations: while they rou-

tinely observe natural selection on heritable traits, in only a handful of cases could they

demonstrate an evolutionary response. Although various explanations for this paradox

have been proposed, comprehensive empirical tests are lacking. Over the past years, we

have therefore studied an alpine population of snow voles. Following all individuals

throughout their lives, we found that body mass is heritable and that heavy voles have a

higher fitness. Nevertheless, mean body mass did not increase. To resolve this, we disen-

tangled the role of genes and the environment in shaping body mass. This revealed that

the population did evolve, but that this was masked by environmental variation. Further-

more, although the genetic change was adaptive, it was opposite to our initial expectation:

the population evolved to become lighter, not heavier. This was because although heavy

voles have the highest fitness, their mass does not cause high fitness. Instead, it is the voles

with the genes for being light that do best, especially when the first winter snow arrives

early. This shows that populations can evolve rapidly, but that without a genetic perspec-

tive, this, and its underlying mechanism, may go undetected.

Introduction

Given the rapid anthropogenic environmental changes experienced by organisms around the

world, there is an increasing need for an ability to understand and predict the evolutionary

dynamics of wild populations [1, 2]. Despite good empirical examples of the adaptive evolution

of traits with a simple genetic architecture [3–5], the picture is very different for quantitative

traits, which in most cases are a function of many genes of small effect [6]. Although these are

the traits that are of most interest to evolutionary biologists [7, 8], predictive models of quanti-

tative trait evolution have largely failed when applied to data from wild populations [9].

Although there is an abundant literature showing that both directional selection [10, 11]

and heritable genetic variation [12, 13] are common, these pre requisites of Darwinian evolu-

tion rarely allow us to explain evolutionary trends retrospectively, let alone to make predic-

tions for the future [9, 14]. For example, both natural and sexual selection almost universally

favour larger and heavier individuals [15]. Furthermore, size-related traits are generally mod-

erately heritable [12, 13], and averaged across the 151 estimates compiled in [13], the heritabil-

ity of body mass is 0.33 ± 0.02. These levels of directional selection and heritability generate an

expectation of rapid evolution of larger body size. Nevertheless, while species do tend to grow

larger over geological time-scales [16–19], this rate of evolution is orders of magnitude slower

than predicted from the strength of selection and heritability observed in contemporary popu-

lations [9, 20, 21].

On the whole, conclusive evidence for the contemporary adaptive evolution of quantitative

traits in wild vertebrate populations is remarkably scarce and elusive [9, 14], and good exam-

ples (Trinidadian guppy life-histories [22], human reproductive timing and educational attain-

ment [23, 24], timing of pink salmon migration [25], and big-horn sheep horn size [26]) can

be counted on the fingers of one hand. Furthermore, of these studies, those dealing with

humans might not be representative of wild populations, [26] reported a response to harvest-

ing-induced, artificial rather than natural selection, and despite considerable effort to uncover

any evolutionary consequences of climate change [2, 27–29], only [25] were able to demon-

strate an adaptation to climate.
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Our apparent inability to reconcile predictions of evolutionary change based on estimates

of selection and genetic variation with the (lack of) phenotypic change observed, i.e., the “stasis

paradox” [9], is a major concern in urgent need of a resolution. Given how commonly evolu-

tionary predictions fail to capture observed trait dynamics, some have concluded that there are

fundamental problems that prohibit the application of quantitative genetic methods to natural

populations [30, 31]. However, there are in fact three theoretically well-developed (quantitative

genetic) explanations for this mismatch.

First, many studies base their conclusion of evolutionary stasis on the observed phenotypic

trend not being significantly different from zero, but they do not explicitly compare the

observed change to the predicted change [32]. Hence, at least some cases of phenotypic stasis

may be the result of a lack of statistical power. Additionally, evolutionary change does not

need to be apparent at the phenotypic level. Instead, evolution may be masked by phenotypi-

cally plastic changes, which may be several-fold larger and/or go opposite to the genetic change

[33], resulting in “cryptic evolution” [34, 35]. For instance, while a change in the environment

may generate selection favouring an increase in the frequency of alleles promoting fat accumu-

lation, at the same time this may create a food shortage, leading to a plastic decrease of fat

reserves.

Second, the observed rates of phenotypic change (which as outlined above may provide

poor estimates of evolutionary change) are typically compared to predictions from the univari-

ate breeder’s equation (UBE), i.e., the product of selection and heritability, where selection is

quantified as the phenotypic covariance between the trait of interest and fitness. In natural sys-

tems, however, selection rarely acts on traits in isolation [36]. If these traits are genetically cor-

related to the focal trait, they may significantly alter the focal trait’s evolutionary trajectory [37,

38]. While the role of genetic correlations among traits within the same individual [39] or

between the sexes [40] has received substantial attention, the potential role of genetic con-

straints resulting from genetic correlations between traits expressed in different life-stages has

received far less attention. In particular, parent–offspring conflicts, e.g.0 a genetic trade-off

between offspring quality and fecundity [41], may constrain the evolution of size [42], with

positive directional selection on offspring size counterbalancing selection against investment

per offspring on the level of parents [43].

Finally, even in the absence of selection on correlated traits, it is challenging to obtain an

estimate of the strength of natural selection that is unbiased by the existence of non genetic

variables that influence both the focal trait and fitness [44]. The UBE assumes that the covari-

ance between phenotype and fitness is solely the result of a causal relationship between the

two, but this assumption is likely to be violated, especially in natural populations [14, 45]. For

instance, a trait that plastically responds to food availability, such as body mass, is likely to

covary with fitness at the phenotypic level, irrespective of the causal effects of this trait on fit-

ness: individuals that have access to more food are heavier and reproduce more [37, 46]. How-

ever, because the fitter individuals may not be genetically different in terms of body mass, this

covariation may have no evolutionary consequences, even if body mass is heritable [44].

While these difficulties have been discussed previously, and studies regularly note that the

mismatch between the observed and predicted response may be attributable to any of them,

they are rarely accounted for in an explicit, quantitative manner. Therefore, we here apply a

comprehensive analytical framework to long-term, individual-based body mass data for a wild

rodent population, which appears to show a mismatch between the observed rate of pheno-

typic change and the predicted rate of genetic change. To resolve this mismatch, we use infor-

mation on within-population relatedness and individual-level trait measurements [47, 48] to

obtain a statistically robust estimate of the direction and rate of genetic change [14, 49, 50].

Subsequently, we disentangle the role of genes and the environment in shaping the covariance
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between body mass and fitness and identify the likely target of selection. This allows us to

directly compare the observed genetic change to a range of evolutionary predictions, and to

thereby resolve the stasis paradox and provide a deeper understanding of selection and evolu-

tion in this system.

Results and Discussion

Based on ten y of data on an alpine population of snow voles [51, 52] (Chionomys nivalis, Mar-

tin 1842), we find that relatively heavy individuals both survive better (p = 0.04) and produce

more offspring per y (p = 0.003). Assuming causality, this generates strong phenotypic selec-

tion favouring heavier individuals (selection differential S = 0.86 g, p< 10−5; mean adult-

mass = 41.7 g, standard deviation = 5.2 g). In line with other morphological traits [12, 13],

variation in body mass has a significant additive genetic component (VA = 4.34 g2, 95% CI

[2.40; 7.36]), which corresponds to a heritability (h2) of 0.21 (95% CI [0.11; 0.29]). Similarly,

we find significant additive genetic variance in fitness (VA = 0.10; 95% CI [0.06; 0.19],

h2 = 0.06 95% CI [0.04; 0.12]), measured as relative lifetime reproductive success (rLRS).

Given these estimates of selection (S) and heritability (h2), and after normalizing by a mean

generation time of 1.2 y, the breeder’s equation (R = h2 S) predicts an adaptive evolutionary

response (R) in body mass [14, 48], i.e., an increase in the mean breeding value for body mass

over time, of 0.17 g/y (95% CI [0.07; 0.28]; Fig 1A UBE). However, over the past nine y

(approximately eight generations), the change in mean body mass is not statistically significant

and small at best (0.08 g/y; 95% CI [−0.02; 0.18]; p = 0.14) after correcting for changes in

demographic structure (i.e., accounting for sex and age effects, see Fig 2A and S1 Fig). This

apparent mismatch between the predicted increase in body mass based on the breeder’s equa-

tion and the absence of a strong and statistically significant phenotypic change would appear

to provide yet another example of the stasis paradox [9].

To test whether the predicted positive genetic trend, i.e., an increase in breeding values, is

being masked by the effects of phenotypic plasticity [9, 35], we directly estimated the additive

genetic covariance between mass and fitness. Based on the Robertson–Price equation, this pro-

vides an unbiased estimate of the rate of genetic change per generation [14, 53, 54]. Contrary

to the predicted evolutionary increase in body mass, this estimate of genetic change in mass is

strongly negative and highly significant (pMCMC < 0.001; Fig 1 GCPE, genetic change Price

equation). When normalized by a mean generation time of 1.2 y, this provides a rate of evolu-

tionary change of −0.29 g/y (95% CI [−0.55; −0.07]), or approximately 7,300 Darwins (the nat-

ural logarithm of the proportional change in trait value over a million y [55]), which is in line

with other estimated rates of “micro evolution” (e.g., between 3,700 and 45,000 Darwins in the

Trinidadian guppies [56]). Importantly, this rate of evolution is unlikely to have happened

solely through genetic drift (pMCMC < 0.001; S2 and S3 Figs) [50], and therefore most likely

reflects a response to selection favouring genetically lighter individuals.

The above result was confirmed by an independent estimate of the rate of evolution using

best linear unbiased predictors (BLUPs) of breeding values for mass. Taking into account the

non independence of BLUPs and sampling variance [49, 50], we find that predicted breeding

values have likely declined over the past nine y (−0.07 g/y, 95% CI [−0.16; 0.01], pMCMC = 0.06;

Figs 2B and 1 TPBV, trend in predicted breeding values), in spite of the BLUPs approach

being potentially biased towards the phenotypic trend [49] (i.e., in this case towards zero).

This negative trend, combined with the fact that the phenotypic mean has either remained

constant or has shown a slight increase (see above), implies that the plastic component of body

mass must have increased. Although the cause of this increase remains unknown, population

size has declined over the study period (S1 Fig), which may have resulted in an increase in the
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per-capita resource availability (i.e., density dependence). Alternatively, the absolute food

availability or quality may have improved. Interestingly, although these environmental

changes may be coincidental, they may also be a direct result of a change in the selection

regime or the evolutionary change toward smaller size itself [35, 57].

The phenotypic selection differential (σP[m, ω], i.e., the phenotypic covariance between

body mass m and fitness ω, measured as rLRS) is equal to the sum of the additive genetic and

environmental covariances between mass and fitness (σA[m, ω] and σE[m, ω]), respectively [14,

53, 54, 58, 59]. Because σP(m, ω) is positive and σA(m, ω) is negative, the environmental covari-

ance must be large and positive (Fig 3 lifetime reproductive success [LRS]). In other words,

while the environmental conditions that make voles heavy (for instance abundance of food or

lack of parasites) also make them successful at reproducing and surviving, there is no causal

positive relationship between breeding values for mass and fitness. It is this difference in sign

between σA(m, ω) and σE(m, ω) that represents an extreme violation of the assumption of the

breeder’s equation that σA(m, ω)/VA = σE(m, ω)/VE [44]. Hence, our initial prediction of evolu-

tion based on phenotypic estimates of selection was wrong, illustrating how the breeder’s equa-

tion may provide severely biased predictions of the evolutionary trajectories of wild

populations. But why is evolution taking place in a direction that is opposite to apparent phe-

notypic selection?

Fig 1. Predicted and observed rates of evolutionary change. Rates of evolutionary change predicted by

(from left to right) the breeder’s equation in its multivariate form (MBE), the multivariate breeder’s equation

while constraining the genetic correlations to zero (MBEρ = 0), and the univariate breeder’s equation (UBE),

followed by the phenotypic trend (PT), the trend in predicted breeding values (TPBV), and the genetic change

estimated by the Price equation (GCPE). All bars represent posterior modes, with vertical lines indicating 95%

CI. Raw data underlying this figure can be found in S1 Data.

doi:10.1371/journal.pbio.1002592.g001
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Indirect selection may be acting on body mass through one or more traits genetically cor-

related to mass [36, 38]: a positive selective pressure on a negatively correlated trait (or a neg-

ative selective pressure on a positively correlated trait) would indirectly select for lower mass.

However, the genetic correlations among the three morphological traits for which we have

data—body mass (m), body length (b), and tail length (t)—are all positive (estimates and

95% CI: ρm,b = 0.79 [0.06; 0.93]; ρm,t = 0.40 [0.01; 0.66]; ρt,b = 0.56 [−0.04; 0.85]), and direct

selection is positive for two of them and only slightly negative for one of them (see S1 Table).

Fig 2. Temporal variation in mass and estimated breeding values for mass. (A): Year-specific mean

mass corrected for age, sex, and date of measurement, with 95% CI. (B): Cohort-specific mean estimated

breeding value for mass with their 95% CI, and the trend in breeding value with 95% CI. Note the different

scaling of the y-axes in A and B. Raw data underlying this figure can be found in S1 Data.

doi:10.1371/journal.pbio.1002592.g002
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Hence, the predicted response based on the multivariate breeder’s equation (Fig 1 MBE) is

very similar to that based on its univariate counterpart (Fig 1 UBE), as well as to that based

on an MBE constraining the correlations to zero (Fig 1 MBEρ = 0). Therefore, the genetic cor-

relations among the traits considered do not constrain the evolution of body mass and do

not explain the trend towards lower body mass. To test whether parent–offspring conflict

between size and fertility might be constraining the evolution of size, we furthermore esti-

mated the genetic correlation between juvenile size and adult annual reproductive success

(ARS), which should be negative for it to provide a constraint [43]. Although we were not

able to incorporate all sources of uncertainty into the estimation of this correlation (see

Methods), our best estimate was 0.21, 95% CI [−0.24; 0.74], which argues against a major

role for a trade-off between fertility and offspring size in driving the observed evolution

toward smaller sizes.

To pursue the possibility that the counterintuitive direction of evolution was due to selec-

tive pressures directly acting on body mass, we first tested which fitness component is nega-

tively associated with genes for being heavy. Computing sex- and age-specific genetic

covariances between mass and fitness components revealed that the genetic covariances

between mass and both relative ARS and adult survival are close to zero in both sexes (Fig 3),

whereas the genetic covariance between mass and over winter survival is negative in juveniles

(−0.98; 95% CI [−2.44; −0.18] on a logit scale, pMCMC = 0.01). Because the genetic correlation

between juvenile and adult mass is positive (rA = 0.88; 95% CI [0.39; 1]) and significantly dif-

ferent from zero (p = 0.004) but not one (p = 0.35), selection on juvenile mass can shape

genetic variance for mass at all ages [60]. While this shows that negative viability selection of

juvenile mass is responsible for the genetic change toward smaller individuals, how come sur-

vival is higher for both heavier phenotypes and lighter genotypes?

Fig 3. Decomposition of selection by fitness component and source of variation. Phenotypic, genetic,

and environmental selection differential for total selection (lifetime reproductive success; LRS), fertility

selection in males (ARS♂) and females (ARS♀), viability selection in juveniles (ϕJuv), as well as in adults (ϕA).

All bars represent posterior modes, with vertical lines indicating 95% CI. Raw data underlying this figure can

be found in S1 Data.

doi:10.1371/journal.pbio.1002592.g003
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Juvenile mass covaries positively with both within- and between-y survival (p = 0.009 and

p = 1.3 × 10−6, respectively). However, juveniles can only be captured when they first leave

their burrows, at an age of approximately three wk [61], when they weigh 12 to 20 g. They

may, however, continue to be captured until the end of the season, when they can reach

weights of up to 50 g. Because of growth, mass measurements are therefore not directly compa-

rable among juveniles of different ages. Indeed, at least part of the positive phenotypic relation-

ship between juvenile mass and survival probability is likely to be mediated by the fact that

both increase with age [62]. In addition, viability selection introduces non random missing

data, which further biases estimates of viability selection on mass [62, 63]. Therefore, the posi-

tive phenotypic association between juvenile body mass and survival is unlikely to be the result

of an among-individual covariation of survival probability and mass, and hence provides a

poor representation of selection.

The (co)variance decompositions presented above have the advantage that they do not

make causative statements. For example, a genetic covariance describing the rate of evolution

has a self-contained, tautological meaning and does not make any assumptions with respect to

its causes [64]. However, if we are to identify the target of juvenile viability selection, we must

adopt a more traditional hypothesis testing framework. This is somewhat complicated by our

relatively poor understanding of snow vole biology, much of which takes place below the rocks

or the snow, and the impossibility to carry out manipulative experiments in a natural setting.

Although this means that the scenario detailed below is in part speculative, it is well supported

by our data.

We hypothesised that juveniles with a low potential adult mass, i.e., juveniles that will grow

up to be relatively small adults (if they survive), require less time to reach their adult size. Fur-

thermore, when the period favourable for growth is limited and juveniles that have not com-

pleted development before the arrival of winter pay a survival cost, for example due to trade-

offs between growth and vital physiological processes [65, 66], survival selection will favour

juveniles that need less time to reach their adult size. This scenario generates selection for

small size—especially for juveniles born toward the end of the season (Fig 4A and S4 Fig)—

and gives rise to a negative genetic association between mass and survival. On the phenotypic

level, this negative selection would, however, be masked by the positive within-individual age-

related association between mass and survival (see above).

Although, as we emphasised above, inferring a causal relationship between a trait and fit-

ness based on their covariance requires great care, we set out to obtain an estimate of viability

selection that is unbiased by growth and non random missing data due to mass-dependent

mortality occurring after the first capture [62]. To this end, we used a Bayesian model to simul-

taneously infer birth dates and growth curves for all juveniles observed at least once. Although

we cannot account for viability selection acting before the first capture, this model enabled us

to quantify viability selection on age-corrected juvenile mass—i.e., asymptotic or predicted

adult mass—and thereby compare all individuals at the same developmental stage (adulthood),

irrespective of their fate. Inferred birth dates revealed that snow fallen during the preceding

winter is a major ecological factor constraining the onset of reproduction in the spring, with

reproduction starting on average 40 d after the snow has melted (standard error [SE] 4.5,

p = 4 × 10−5) (Fig 4B). As a consequence, juveniles only have a limited amount of time to grow

and reach their adult mass before the return of winter. As growth rate and predicted adult

mass are only weakly (and negatively) correlated (correlation −0.077; 95% CI [−0.150;

−0.002]), juveniles with a smaller adult mass on average require less time to complete develop-

ment. The strength of survival selection acting on predicted adult mass was slightly negative

when averaged over all years and the complete reproductive season (pMCMC = 0.13), but inter-

acted strongly and significantly with the number of days between birth and the first snowfall of

Adaptive Body Mass Evolution Opposite to Apparent Selection in a Wild Rodent
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Fig 4. Snow-free season, timing of reproduction and selection for potential adult mass. (A) Hypothetical scenario generating selection for lower

body mass. In years with short summers (2008–2014), juveniles born late and having a large potential adult mass are still growing at the onset of winter

and are therefore less likely to survive (blue vertical line). This results in selection for individuals with a low potential adult mass, despite mass covarying

positively with survival on a within-individual level due to variation in age. (B) Births (black dots) only occur during the snow-free season (the depth of the

snow cover is indicated by the thickness of the blue dots), (C) which in 2008–2014 has been shorter than in the preceding seven y. Therefore, (D) despite

a positive phenotypic selection on body mass (blue), predicted adult mass was selectively neutral in 2006–2007 (brown) and was negatively selected in

2008–2014 (red). Raw data underlying this figure can be found in S1 Data.

doi:10.1371/journal.pbio.1002592.g004
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that year (interaction = 0.0025, 95% CI [0.0001; 0.0048] pMCMC = 0.008; for other effects see S2

Table). This implies that individuals born closer to the first snowfall are more strongly selected

for a low adult mass, and that the length of the snow-free period in a given year determines the

total selection experienced by the population in that year.

At our field site, the length of the snow-free period in the years 2008 to 2014 has been signif-

icantly shorter than during the preceding seven y (Fig 4C). The latter coincides with a period

of exceptionally high snowfall, low temperatures, and a long duration of snow cover across the

Swiss Alps [67]. Our model estimates that in 2006 and 2007, when the snow-free period was

long, most juveniles reached their adult mass before the first snowfall, and there was hence no

selection on predicted adult mass (β = −0.002, SE = 0.0006, pMCMC = 0.47, Fig 4D and S4 Fig).

However, in all subsequent years, the snow-free period was much shorter, and there was selec-

tion for a lower predicted adult mass (β = −0.10, SE = 0.0008, pMCMC = 0.009). This suggests

that the shortening of the snow-free season, and thereby selection for lower predicted adult

mass, is a novel phenomenon that the population is currently in the process of adapting to.

Assuming that the additive genetic variation in potential adult mass is similar to the additive

genetic variation in mass (4.34 g2, see above), the breeder’s equation (R = βVA) predicts a

response to selection on potential adult mass between −0.72 and −0.24 g/y (from 2008 and

2014), which is in line with the observed rate of body mass evolution (−0.29 g/y [−0.55; −0.07]

from 2006 to 2014).

Model complexity and data availability prohibit rigorously disentangling genetic and envi-

ronmental sources of variation in predicted adult mass among individuals and over time.

Therefore, we cannot rule out the possibility that the selective pressure we identified is not

causative [68], nor can we rule out other selective forces contributing to the observed evolu-

tion. Nevertheless, the hypothesis presented here is consistent with observations: the cohort

born in 2013 had an estimated adult mass that was 1.02 g smaller than the cohort born in 2006

(p = 0.05). This decline in mass is predicted to have increased population-level juvenile survival

by 2.5% and may have contributed positively to population recovery (S1 Fig).

Conclusion

We have exploited a case of apparent evolutionary stasis to gain a deeper insight into the evo-

lutionary dynamics of natural populations and the selective pressures that shape them.

Whereas estimates of selection and evolution based on phenotypic data alone can easily mis-

lead our understanding of the selective and evolutionary processes in natural populations, a

quantitative genetic framework applied to individual-based long-term data allows us to

unravel evolutionary and environmental changes over time and to obtain unbiased estimates

of selection. This has resolved a case of apparent evolutionary stasis, providing a comprehen-

sive empirical demonstration of contemporary adaptive evolution in response to a climatic

fluctuation.

Methods

Snow vole monitoring

Monitoring of the snow vole population began in 2006, and the present work uses data col-

lected until the fall of 2014. The snow vole monitoring was authorised by the Amt für Lebens-

mittelsicherheit und Tiergesundheit, Chur, Switzerland. The study site is located at around

2,030 m above sea level, in the central eastern Alps near Churwalden, Switzerland (46˚48’ N,

9˚34’ E). The site consists of scree, interspersed with patches of alpine meadows and sur-

rounded by habitat unsuitable for snow voles: a spruce forest to the west, a cliff to the east, and

large meadows to the north and south. In accordance with them being considered a rock-
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dwelling specialist [61], snow voles were almost never captured outside of the rocky area at our

study site. Given that it is ecologically fairly isolated, we were able to monitor the whole popu-

lation. Trapping throughout the whole study area took place during the snow-free period,

between late May and mid-October. One trapping session consisted of four trapping nights.

Analyses presented here are based on a total of two (in one y), three (in three y), or five (in five

y) trapping sessions per season. All newly-captured individuals weighing more than 14 g were

marked with a subcutaneous passive transponder (PIT, ISO transponder, Tierchip Dasmann,

Tecklenburg). Additionally, an ear tissue sample was taken (maximum 2 mm in diameter)

using a thumb type punch (Harvard Apparatus) and stored in 100% ethanol at −20˚C. DNA

extracted from these samples was genotyped for 18 autosomal microsatellites developed for

this population [69], as well as for the Sry locus to confirm the sex of all individuals. Finally,

another Y-linked marker as well as a mitochondrial marker was used to check for errors in the

inferred pedigree (see below). An identity analysis in CERVUS v.3.0 [70] allowed us to identify

animals sampled multiply, either because they lost their PIT or because at their first capture as

a juvenile they were too small to receive a PIT. Over the study period we obtained 3,382 cap-

tures of 937 individuals (see S5 Fig). All the analyses were carried out in R [71]. Specific pack-

ages are referenced below.

Pedigree inference

Parentage was inferred by simultaneously reconstructing paternity, maternity, and sibship

using a maximum likelihood model in MasterBayes [72]. Parentage was assigned using a

parental pool of all adults present in the examined year and the previous year, assuming polyg-

amy and a uniform genotyping error rate of 0.5% for all 18 loci. As it is known that only in

rare cases do females reach sexual maturity in their year of birth [61], we matched the geno-

types of all individuals against the genotypes that can be produced by all possible pairs of

males and females. We retrieved the combinations having two or less mismatches (out of 18

loci) and ensured that parental links were not circular and were temporally consistent. This

way, we identified eight young females as mothers of animals born in the same year with a

known father but a mother not previously identified. All of these females were relatively heavy

(>33 g) at the end of the season, and their home-ranges matched those of their putative off-

spring. Finally, the pedigree was checked using a polymorphic Y-linked locus developed for

this population [73], as well as a fragment of the mitochondrial DNA control region, amplified

using vole-specific primers [74]. There were no inconsistencies between the transmission of

these three markers and the reconstructed pedigree. Although the study period spans over 7.5

times the mean generation time, the final pedigree had a maximum depth of 11 generations

(one for each of the nine y of monitoring, plus one for the unobserved parents of siblings that

could be inferred in the first year, plus one due to the reproduction of a few females in the

same year they were born) and a mean depth of 3.8 generations. The pedigree consists of 987

individuals (more than the number of captured individuals because the pedigree contained the

unobserved parents of some full siblings that could be reliably inferred), 458 full-sibling pairs,

3,010 half-sibling pairs, 764 known maternities, and 776 known paternities, so that, excluding

the base population, 86% of the total parental links were recovered.

Traits

The recapture probability from one trapping session to the next was estimated to be 0.924 (SE

0.012) for adults and 0.814 (SE 0.030) for juveniles using mark-recapture models. Thus, with

three trapping sessions a year, the probability not to trap an individual present in a given year

is below 10−3. Not surprisingly, no animal was captured in year y, not captured in y + 1, but
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captured or found to be a parent of a juvenile in y + 2 or later. Therefore, capture data almost

perfectly matches over winter survival. However, as is almost always the case in this type of

study, we are unable to separate death from permanent emigration. Importantly, however, as

both have the same consequences on the population level, this does not affect our evolutionary

predictions.

ARS and LRS were defined as the number of offspring attributed to an individual in the

pedigree, either over a specific year or over its lifetime. Fifty-six individuals born of local

parents were not captured in their first year, but only as an adult during the next summer,

probably because they were born late in the season and we had few opportunities to catch

them. This means that we miss a fraction of the juveniles that are not observed in their first

year and die, or emigrate, during the following winter. We acknowledge that this means that

our measures of ARS and LRS partly conflate adult reproductive success and the viability of

those juveniles that were never observed, but our measures are the most complete measures of

reproductive success available in this system.

In order to estimate total selection, we used relative LRS (ω) as a proxy for fitness [36],

where oi ¼
LRSi

1
Ns;t

PNs;t
j¼1

LRSj;t
. Here, Ns,t is the number of individuals of same sex as the focal indi-

vidual i, present in the cohort t, so that 1

Ns;t

PNs;t
j¼1 LRSj;t is the sex-specific, cohort-specific mean

of LRS. The latter is required as the mean LRS differs between males and females due to imper-

fect sampling [14]. We used cohort-specific means in order to account for variations in popu-

lation growth rate. In addition, to estimate the viability and fertility component of total

selection, we used ARS and survival, standardized by their sex- and y-specific means.

Generation time was defined as the mean age of parents at birth of their offspring [75] and

used to convert the predictions and estimations of evolution into g/y.

Mass (m) was measured to the nearest g with a spring scale. Both body length (b), measured

from the tip of the nose to the base of the tail, and tail length, measured from the tip to the

base of the tail (c), were measured to the closest mm with a calliper while holding the animal

by the tail.

Selection

Selection differentials were estimated using bivariate linear mixed models, as the individual-

level covariance between fitness (i.e., relative LRS for total selection, relative ARS for fertility

selection, and relative survival for viability selection) and mass (corrected for sex, age, and

cohort). However, while this provides the best estimate of the within-generation change in

trait mean due to selection [36], because the distribution of fitness is not Gaussian, the credi-

bility intervals produced by these models are not exact. Hence, the statistical significance of

selection was tested using a univariate over dispersed Poisson generalized linear mixed model

(GLMM) in which LRS was modelled as a function of individual standardized mass and

included sex and age as covariates and cohort as a random effect. Note that the latter estimates

the effect of mass on a transformed scale and therefore cannot be directly used to quantify an

effect of selection on the original scale measured in grams [76]. The significance based on the

basis of the GLMM was confirmed by non parametric bootstrapping. Similarly, we tested for

the significance of selection through ARS only, using an over dispersed Poisson GLMM

including sex as a fixed effect and year and individual as random effects.

The estimation of survival selection is facilitated by the fact that the y-to-y individual recap-

ture probability is effectively one. Therefore, selection on y-to-y survival was tested for by a

binomial GLMM. This model included sex, age, and their interaction as fixed effects and y as a

random effect.
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In order to integrate the uncertainty in the estimation of selection with the uncertainty in

the estimation of heritability when predicting the rate of evolution, selection differentials and

gradients were also obtained from the multivariate animal model presented below.

Quantitative genetic analyses

We used uni- and multivariate animal models to estimate additive genetic variances,

covariances, and breeding values [48, 77, 78] with MCMCglmm [79]. All estimations were

carried out in a Bayesian framework in order to propagate uncertainty when computing

composite statistics such as heritabilities and rates of genetic change [58]. All estimates pro-

vided in the text are posterior modes, and credibility intervals are highest probability den-

sity intervals at the 95% level. All the animal models were run for 1,300,000 iterations with

a burnin of 300,000 and a thinning of 1,000, so that the autocorrelations of each parameter

chain was less than 0.1. convergence was checked graphically and by running each model

twice.

Univariate models. We first carried out univariate model selection, fitting models with-

out an additive genetic effect, to determine which fixed and random effects to include. Based

on AICc [80], and fitting the models by maximum of likelihood in lme4 [81], we obtained a

model that predicts the mass mi,t of individual i at time t by: age, as a factor (juvenile or adult);

sex as a factor; the interaction between age and sex; Julian dates and squared Julian dates (in

order to correct for population-level seasonal variation in mass: individuals of all sexes and

ages tend to be heavier in the middle of summer and lighter in spring and fall, possibly as a

result of food abundance), which were centred and divided by their standard deviations in

order to facilitate convergence; the interaction between age and Julian date; the interaction

between sex and Julian date; the three-way interaction between age, sex, and Julian dates; a

random intercept for individual, i.e., permanent environment; and a random intercept for y.

The inclusion of y accounts for non independence of observation within y, while the perma-

nent environment random effect accounted for the non independence of repeated measure-

ments made on the same individual [82].

We then fitted an animal model by adding a random intercept modelling variance associ-

ated with mother identity [78] and a random intercept modelling additive genetic variance.

Although it was not included in the best models, we kept inbreeding coefficient (estimated

from the pedigree) as a covariate because leaving it out could bias the later estimation of addi-

tive genetic variation [83]. Nevertheless, animal models fitted without this covariate gave indis-

tinguishable estimates. The univariate animal model for body mass can be written as:

m � bX þ D1aþ D2μþ D3pþ D4y þ Ir: ð1Þ

Here, X, D1, D2, D3, and D4 are design matrices relating observations to the parameters to

estimate, b is a matrix of fixed effects, a, μ, p, and y are random effects accounting for the vari-

ance associated with breeding value, mother, permanent environment (i.e., individual repeat-

ability), and y, respectively.

The most important aspect of this model is that a, the matrix of breeding values, follows a

multivariate normal distribution:

a � MV Nð0;A� s2

AðmÞÞ ð2Þ

where A is the relatedness matrix describing the relatedness among all individuals, and s2
AðmÞ

is the additive genetic variance in body mass. For univariate animal models for each random

effect, we used a vague proper prior with the variance parameter set to 1 and the degree of

belief set to 0.002.
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Multivariate models. Univariate animal models can be expanded to multivariate models

in order to estimate genetic correlations, genetic gradients, and genetic differentials between

body mass (m), body length (l), tail length (t), and fitness (ω).

½m; l; t;ω� � bX þ D1aþ D2μþ D3pþ D4y þ Ir: ð3Þ

The fixed part of the model matches that used for each trait in univariate models. We used

parameter-expanded priors for the variance components in order to facilitate convergence of

parameters that were close to zero [79]. The working parameter prior was normally distrib-

uted, with a mean of 0 and a variance of 1,000. For ω, the residual variance was set to zero in

the model so that the residual variance in fitness is estimated by the permanent environment

random effect. Although fitness is measured only once per individual, this allows the estima-

tion of the covariance between fitness and the non additive genetic repeatable component of

trait variation, that is the environmental component of selection [14]. We assumed a Gaussian

distribution for fitness so that covariances between traits and fitness could be directly inter-

preted as selection differentials [76].

The matrix of breeding values (a) here follows a multivariate normal distribution:

a � MV Nð0;A
 GÞ ð4Þ

where A is the relatedness matrix describing the relatedness among all individuals, and G is

the G-matrix containing the additive genetic variances and covariances among all traits.

G ¼

s2
AðmÞ sAðm; lÞ sAðm; tÞ sAðm;oÞ

sAðm; lÞ s2
AðlÞ sAðl; tÞ sAðl;oÞ

sAðm; tÞ sAðl; tÞ s2
AðtÞ sAðt;oÞ

sAðm;oÞ sAðl;oÞ sAðt;oÞ s2
AðoÞ

0

B
B
B
B
@

1

C
C
C
C
A
: ð5Þ

For any trait z, σA(z, ω) is the genetic differential, that is, the predicted rate of evolutionary

change according to Robertson’s secondary theorem of natural selection, or the Price equation

applied to genetic variation [14, 53, 54, 58]. The Price equation is generally presented as a pre-

diction of evolutionary change over the next generation, but it has also been used as a descrip-

tion of change [64, 84, 85]. We use this prediction retrospectively, as an estimation of the

mean evolutionary change that has occurred during the study period, which makes the

assumption that ω is a good measure of fitness; because when “real fitness” is used, the equa-

tion is a mathematical tautology, i.e., it is exact [64]. A deviation from this perfect fitness mea-

sure could come from random Mendelian segregation or systematic meiosis distortion. Our

results were robust to the use of an annualized measure of fitness (ARS plus twice survival)

and to standardizing fitness across all individuals, within y, within cohorts, or within sexes.

For two traits z and y, the genetic correlation is
sAðz;yÞ

sAðzÞsAðyÞ
. The vector of selection differentials

on the three traits (S) was estimated as the sum of the vectors of covariances between traits and

ω in the variance–covariance matrices for a, p, m, and r, which was equivalent to the selection

differential computed in the paragraph on selection above. Let G0 be a subset of G excluding

the column and the row that contain ω. The vector of selection gradients on the three traits (β)

was estimated as (G0 + P0 + R0)−1 S, where P0 and R0 are the equivalent of G0 for permanent

environment effects and for residuals, respectively [38, 58]. The prediction of the MBE is

obtained by D �Z0 ¼ G0β. In order to visualise the effect of the genetic correlations on the pre-

dictions of evolution, we also applied an MBE that assumes the genetic correlations to be zero.

To this end, we multiplied the G0 matrix by the identity matrix [38]: D �Z0 ¼ ðG0 � IÞβ. We

excluded the among-y level covariance from the selection differential and gradients, because
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(i) covariation between mass and fitness at the level of y does not correspond to selection as it

does not occur among individuals and (ii) due to the standardization of relative fitness at the

level of cohorts, the among-y variance and covariances involving ω were effectively zero

(s2
YðoÞ < 10� 8).

To investigate the potential role of parent–offspring conflict, we estimated the genetic cor-

relation between parental ARS and offspring mass using a bivariate animal model. For juvenile

mass, we used predicted adult mass (i.e., age-corrected juvenile mass; see below). We were not

able to incorporate the uncertainty in the estimation of predicted adult mass in this model and

used the mean of the posterior distribution of each individual. The credibility intervals derived

from this model are therefore only indicative. The model included sex as fixed effect and ran-

dom additive genetic, individual identify (i.e., permanent environment effects), maternal iden-

tity, and year effects.

To decompose selection components into environmental and genetic covariances (as pre-

sented in Fig 2B), we fitted models like the one described in Eqs (1–3) but replaced fitness (ω)

with the appropriate fitness components: relative ARS or relative survival; and took the appro-

priate subset of the data: adult males (ARS♂), adult females (ARS♀), adults (ϕAd), or juveniles

(ϕJuv). To estimate readily interpretable environmental and genetic covariances between body

mass and fitness, we again assumed a Gaussian distribution of fitness components [76].

Test of genetic correlations. We used ASReml-R [86, 87] to test the genetic correlation

between mass in adults and in juveniles against one and zero, by considering them as two sepa-

rate traits. We first ran an unconstrained model and then reran it with the genetic correlation

parameter set to 0.99 (and not exactly to one because ASReml cannot invert matrices with

perfect correlations) or zero, respectively. The fit of the unconstrained model was then com-

pared to that of the two constrained models using a likelihood ratio test with one degree of

freedom [88].

Birth date and growth prediction. Using the Bayesian programming environment JAGS
[89], we fitted a multivariate Bayesian model to mass measurements of all 613 juveniles with

mass data and to their overwinter survival. The model simultaneously estimated individual

growth curves—that is onset of growth (although this is referred to as “birth date” hereafter,

this actually is the projected time when mass was zero, i.e., at conception), individual growth

rates, and asymptotic masses (i.e., predicted adult mass) of all juveniles—and the effect of pre-

dicted adult mass on overwinter survival. The model clustered juveniles from the same mother

born in the same year into litters (see e.g., [90] for a similar approach), assuming a maximum

of five litters per y and assuming that successive litters are at least 20 d apart [61]. Preliminary

model selection, assuming no differences in predicted adult masses among individuals,

selected a monomolecular growth model (ΔDIC> 80) over Gompertz and logistic models, as

defined in [91]. The model accounted for measurement error in mass, assuming that the stan-

dard deviation of the errors was that observed in animals measured multiple times on the

same day (2.05 g). In order to estimate the overall viability selection on predicted adult mass,

we performed within the model a logistic regression of y-to-y survival on sex and predicted

adult mass. In order to test for the effect of the length of the snow-free period on the selection

of predicted adult mass, we reran the full model including time until the first snowfall and its

interaction with predicted adult mass in the logistic regression. We use the estimates of these

two models to predict the survival probability as a function of predicted adult mass for every

year, or for groups of years, depending on the distribution of birth dates and on the timing of

the first snowfall.

Three MCMC chains were run for 6,300,000 iterations, with a burnin of 300,000 and a thin-

ning of 6,000. Convergence was assessed by visual examination of the traces and by checking
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that R̂ < 1:01. Convergence was not achieved for the litter affiliations of 25 individuals as well

as for one predicted adult mass, thus introducing a bit more uncertainty in the estimations.

The fit of the model was assessed using posterior predictive checks on the predictions of indi-

vidual masses (p = 0.46) and survival probabilities (p = 0.49). The JAGS code for this model

can be found in S1 Data.

Supporting Information

S1 Table. Selection differentials (measuring total selection) and gradients (measuring

direct selection only) for body mass, body length, and tail length, when considered in the

same selection analysis. Means and standard deviations are given for adults. Selection param-

eters were obtained from a multi variate animal model containing body mass in g, body and

tail length in mm, as well as rLRS as a measure of fitness. Credibility intervals should be inter-

preted with care because fitness was modelled as a Gaussian trait in order to obtain meaningful

selection parameters, while its distribution is closer to a Poisson distribution.

(PDF)

S2 Table. Outcome of the logistic regression of juvenile overwinter survival on potential

adult mass and time between birth and winter. All values are on the logit scale. Estimates are

means of posterior distributions, 95% CI are highest posterior density credibility intervals, and

pMCMC are posterior bayesian p-values. Potential adult mass was estimated from a growth

model, along with birth date. The parameter “Interaction” refers to the interaction of potential

adult mass with the time interval between the onset of winter and estimated birth date.

(PDF)

S1 Fig. Temporal variation in population size and age-structure. Number of unique adults

and of juveniles captured in each y.

(PDF)

S2 Fig. Estimation of the rate of genetic change and rate of change expected under drift.

The posterior distributions of the realized rate of genetic change, estimated by the Price equa-

tion, exceeds that expected under genetic drift p = 0.009. Note that the posterior samples of

drift and of genetic change are paired and correlated: small (/large) values of change due to

drift are simulated for small (/large, respectively) posterior samples of estimated rate of evolu-

tion. Therfore, there is some overlap between the two distributions, but the probability that the

genetic change was produced by drift is small (0.009).

(PDF)

S3 Fig. Estimation of the time trajectory of genetic change and evolutionary trajectories

simulated with drift only. Evolution of breeding values for mass are shown relative to the

year 2006. The yellow lines show the mode and 95% CI of the rate of evolution estimated by

the Price equation within an animal model. The gray lines show 1,000 simulations of genetic

drift, based on the real population pedigree and on the posterior distribution of genetic vari-

ance for mass estimated by the animal model. The probability that the observed rate of evolu-

tion happened because of drift is only 0.009, less than could be understood from the overlap

between the two distributions. It is, however, important to notice that the two distributions are

not independent, but that small (/large) values of change due to drift are simulated for small

(/large, respectively) posterior samples of estimated rate of evolution.

(PDF)

S4 Fig. Conceptual illustration of the selection for asymptotic mass despite apparent selec-

tion for mass. Black lines represent simulated individual growth trajectories from conception,
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and they are prolonged by gray dashed lines after an individual’s death. Color gradients indi-

cate an increase in the parameter value from blue to red. The probability of surviving between

the time of measurement and the next year increases with age. Because mass increases with

age, there is apparent selection favoring heavier individuals. However, it is still possible for via-

bility selection at a given developmental stage, such as asymptotic mass, to be negative. Because

genetic variation is related to asymptotic mass, but not to age, the expected genetic change will

be toward lower masses.

(PDF)

S5 Fig. Distribution of the number of captures per individual. (A) for the whole data set;

(B) for juveniles only.

(PDF)

S1 Data. Data and code necessary to reproduce the figures and main results. See the readme

file for explanations on the content.

(ZIP)
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