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Abstract

It is increasingly common for studies of evolution in natural populations to infer the quantitative 
genetic basis of fitness (e.g., the additive genetic variance for relative fitness), and of relationships 
between traits and fitness (e.g., the additive genetic covariance of traits with relative fitness). There 
is a certain amount of tension between the theory that justifies estimating these quantities, and 
methodological considerations relevant to their empirical estimation. In particular, the additive 
genetic variances and covariances involving relative fitness are justified by the fundamental and 
secondary theorems of selection, which pertain to relative fitness on the scale that it is expressed. 
However, naturally-occurring fitness distributions lend themselves to analysis with generalized linear 
mixed models (GLMMs), which conduct analysis on a different scale, typically on the scale of the 
logarithm of expected values, from which fitness is expressed. This note presents relations between 
evolutionary change in traits, and the rate of adaptation in fitness, and log quantitative genetic 
parameters of fitness, potentially reducing the discord between theoretical and methodological 
considerations to the operationalization of the secondary and fundamental theorems of selection.

Subject area:  Quantitative genetics and Mendelian inheritance
Key words: fitness, fundamental theorem of selection, generalised linear mixed model, genetic variation, natural selection, sec-
ondary theorem of selection  

Introduction

The fundamental and secondary theorems of selection (Fisher 1930; 
Robertson 1966) define how mean additive genetic values for fitness 
and traits and change, within generations, as a result of selection. 
The fundamental theorem of natural selection (FTNS) states that

∆āw = σ2
aw , (1)

where ∆āw is the within-generation change in the genetic value for 
relative fitness, and σ2

aw  is the variance of genetic values for relative 
fitness. In the absence of any change in the environment, the change 

in mean fitness from one generation to the next would be ∆āw. 
However, the environment generally does change, and in the case 
of relative fitness, it necessarily changes. The definition of a change 
in the environment intended by Fisher is extremely broad, and al-
lele frequency – i.e., evolutionary change itself – can constitute a 
change in the environment (Ewens 1989; Price 1972; see Walsh and 
Morrissey 2019 for an overview of this concept). Genetic values, a, 
as opposed to genotypic values, for any quantity (e.g., phenotype, 
fitness), are defined to be the predictions from the multiple regres-
sion of phenotype on allelic dose at all loci. Genetic values thus 
refer to the total effects of alleles, not genotypes, on a character 
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(in this case fitness), as obtained from predictions of the multiple 
regression of the trait on genotype. The thought experiment in this 
definition of genetic values is one where genotypes are expressed 
numerically as the number of each type of allele present at each 
locus in each individual (Falconer (1960), chapter 7), and fitness 
is simultaneously regressed on the allelic compositions of individ-
uals at every locus. Genetic effects as defined here are often called 
“additive” genetic effects or “breeding values”. The secondary 
theorem of selection (STS) states that

∆āz = σaz,w, (2)

where ∆āz is the within generation change in genetic values for trait 
z, i.e., of az, and σaz,w is the covariance of genetic values for the trait 
with relative fitness.

A brief aside about different versions of of the STS may pre-
vent ambiguity later. Alan Robertson originally (Robertson 1966) 
gave the secondary theorem as it is presented in equation 2, but sub-
sequently (Robertson 1968) referred to the theorem as pertaining 
to the additive genetic covariance of phenotype and fitness, i.e., 
∆āz = σaz,aw, i.e., the genetic covariance of genetic values for trait 
and fitness, rather than the covariance of genetic values for the trait 
with (phenotypic) fitness. The former expression, given in equation 
2 is the true theorem; Walsh and Lynch (2018), chapter 6, describes 
this distinction with care. The two expressions are equivalent if en-
vironmental effects on the trait and fitness are independent of genetic 
effects. This may not be the case in practice, but assuming this in-
dependence may be useful in both theoretical and statistical models. 
Independence of genetic and environmental effects, and thus that 
σaz,w = σaz,aw, will be assumed in this paper. The covariance of gen-
etic values, or the additive genetic covariance, will generally be ex-
pressed with the conventional notation of σa(z,w).

There is a certain amount of interest in estimating the quantities 
appearing in equations 1 and 2. These are fundamental quantities 
determining the rate of adaptation and phenotypic evolution. Also, it 
is sometimes useful to directly estimate σ2

aw  and σaz,w for the purpose 
of comparing these results to evolutionary predictions based on em-
pirical estimates of phenotypic selection (Rausher 1992; Stinchcombe 
et al. 2002; Kruuk et al. 2003; Morrissey et al. 2010, 2012). The latter 
may be misleading if unmeasured quantities (either traits or environ-
mental variables that may influence both trait values and individual 
fitness) cause covariance between traits and fitness. Mis-matches be-
tween direct application of the fundamental theorems of selection 
and predictions derived from separate inferences of phenotypic se-
lection and genetic variation, i.e., using the breeder’s or Lande equa-
tions (Lande 1979; Lush 1937), could be indicative of the presence of 
unmeasured quantities interfering with phenotypic selection analyses.

Whether for inferences of the genetic variance of relative fitness, 
and the genetic covariance of relative fitness with phenotype in their 
own right, or their inference for the purpose of comparisons with 
predictions of evolution made in other ways, empirical inference of 
σ2
aw  and σaz,w will be extremely challenging. It is likely that robust 

statistical models of fitness will require elaborations on basic mixed 
modelling techniques that are widely used for inference of quantita-
tive genetic parameters in nature (Kruuk 2004; Wilson et al. 2010). 
In particular, genetic and environmental influences on any quantity 
that is constrained to take non-negative values, particularly fitness, 
are likely to be multiplicative, and so understanding how effects that 
may be additive on a logarithmic scale relate to evolutionary quan-
titative genetic theory would be very useful. Furthermore, statistical 
modelling techniques are now available (Generalized Linear Mixed 

Model (GLMM); Bolker et al. 2009; Hadfield 2010) that allow in-
ference to be conducted, not only on a logarithmic underlying scale, 
but also to apply distributions for variability that conform naturally 
to fitness data, for example, to directly accommodate fitness data in 
the form of counts. The purpose of this article is to determine what 
relations there might be between inferences of the genetic variance 
of fitness, and its genetic covariance with traits, on the log scale, with 
the rate of adaptation and phenotypic evolution.

An analogue of the Fundamental Theorem of 
Natural Selection, for log-normal expected 
fitness

Throughout, we will mostly be concerned with properties of ex-
pected fitness. This notion may be most expediently clarified in rela-
tion to an empirical analysis. Consider variation among individuals 
in realized fitness, for example, of many fitness values such as Wi=0 
or Wi=10 for hypothetical individuals that produced zero or ten off-
spring during their lives. Such variability might be described by a 
model of the form

xi = α+ ax,i + ex,i, (3a)

Wi ∼ V (µ = exi , θ) , (3b)

where additive genetic values for fitness on the log scale, αx, might be 
assumed to be normally distributed according to ax ∼ N

(
0,Aσ2

ax

)
,  

where A is the genetic relatedness matrix among individuals with 
breeding values in ax, and residuals are independently distributed ac-
cording to ex,i ∼ N

(
0,σ2

ex

)
. This definition of additive genetic values 

corresponds to covariances among kin arising from additive genetic 
effects (Fisher 1918; Falconer 1960). V () represents an arbitrary dis-
tribution with mean µ, and possibly with additional parameters θ; 
for example, V () might represent a Poisson distribution for realisa-
tions of fitness around each individual’s expected fitness, exi, consid-
ering both its genetic composition (ax,i) and any additional sources of 
variation that cause differences among individuals in their expected 
fitness. Expected fitness can be thought of as a latent quantity, that 
is essentially unobservable on individuals, but where it may none-
theless be possible to model heterogeneity among individuals. This 
model (equation 3), upon which results in this paper are based, co-
incides with a generalized linear animal model analysis (Hadfield 
2010; Wilson et al. 2010).

Let x represent the logarithm of expected fitness as in equation 
3. Mean expected absolute fitness, assuming expected fitness to be 
log-normally distributed, i.e., of E[W]i = exi when x ∼ N(µx,σ2

x), is

W̄ = Ē[W] =

ˆ
exN(x,µx,σ2

x)dx = eµx+
σ2
x
2 , (4)

where N(x,µx,σ2
x) denotes the density of a normal distribution 

with mean µx and variance σ2
x, evaluated at x. A  detailed deriv-

ation is given in the appendix, but one may note that this is merely 
the standard expression for the mean of a log-normal distribution 
(Aitchison and Brown 1957). Assume that an individual’s value on 
the log-normal scale, xi, is determined by additive genetic and other 
non-genetic factors, such that for individual i, xi = µx + ax,i + ex,i 
(as in equation 3a), and that genetic effects are independent of other 

effects such that σ2
x = σ2

ax + σ2
ex. Expected relative fitness, i.e., E[W]i

W̄  of 

an individual with genetic value ax is thus
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E[w|ax] =
eµx+ax+

σ2
x−σ2

ax
2

eµx+
σ2
x
2

= eµx+ax+
σ2
x
2 −

σ2
ax
2 −µx−

σ2
x
2 = eax−

σ2
ax
2 ,

 (5)
and so the covariance of ax with relative fitness is

σax,w =

ˆ
axeax−

σ2
ax
2 N(ax, 0,σ2

ax)dax = σ2
ax . (6)

A detailed derivation is given in the appendix. This result is per-
fectly natural, as taking the natural logarithm of a quantity is closely 
analogous to re-expressing that value in units of its own mean. Thus, 
the within-generation change in genetic values for log expected fit-
ness is the genetic variance for log fitness.

Equation 6 gives a direct analogue of the FTNS. However, our 
assumption of a log-linear relationship between x and fitness intro-
duces a consistent sort of distortion of inheritance of fitness, such 
that even in a constant external environment (e.g., effects of popula-
tion density, climate, etc.), the change in allele frequencies underlying 
fitness will themselves constitute a change in the environment (or ra-
ther of the environment, in the special way that it was conceived by 
Fisher), such that the actual change in mean fitness will be distorted. 
On the assumption that genetic values of log fitness, but not fitness 
on its original scale, are faithfully transmitted to the next generation 
(i.e., the genetic environment is constant on the log scale), then from 
the secondary theorem of selection, the change in mean expected log 
fitness between generations is simply ∆x̄ = ∆āx = σax,w = σ2

ax.
Under the assumptions already introduced, we can calculate 

the distortion resulting from the non-linear (logarithmic) relation-
ship between x and fitness. The function xi = log(E[W]i) can be 
thought of as a non-linear developmental function, and mechanics 
for predicting evolution in such a system can be used (Morrissey 
2015). From equation 4, the mean expected value for fitness in the 
next generation is then

W̄′ = Ē[W]
′
= eµx+σ2

ax
+

σ2
x
2 .

From this, we can obtain an expression for the change in relative 
fitness from one generation to the next due to selection, expressed in 
relation to relative fitness in the first generation. Assuming that the 
distribution of effects on phenotype arising in the external environ-
ment (such as effects of weather and competitors) are unchanged, the 
change relative to fitness in the first generation is

∆w̄ =
W̄′

W̄
− W̄
W̄

=
eµx+σ2

ax
+

σ2
x
2

eµx+
σ2
x
2

− 1 = eσ
2
ax − 1. (7)

That the between-generation change in relative fitness due to the 
response to selection under a log-normal model of expected fitness 
is given by ∆w̄ = eσ

2
ax − 1 should not be regarded as a theorem. In 

other words, this relation should not be regarded as a very general 
result with virtually no assumptions as is the case for how the FTNS 
and STS predict the within-generation change in genetic value (Price 
1972; Ewens 1989). Rather, ∆w̄ = eσ

2
ax − 1 is a theoretical result 

given some assumptions that may or may not be useful. Specifically, 
the result ∆w̄ = eσ

2
ax − 1 applies to the expected change in relative 

fitness due to evolution alone (i.e., changes in the non-genetic en-
vironment due, for example, to quantities such as weather and the 

density of competitors, may generate a different change in pheno-
type), assuming a constant genetic environment (i.e., that the slope 
of the regression of phenotype – fitness in this case – on genotype 
does not change) on the scale of log fitness. This expression assumes 
that fitness is log-normal, and that genetic variation is additive on 
the log-normal scale, and genetic values on the log-normal scale are 
normally distributed. Furthermore, it applies either to a population 
under equilibrium between the effects of selection and recombin-
ation on σ2

a, or it applies to the permanent change in W̄ , i.e., that 
which would occur with the restoration of linkage equilibrium under 

random mating. The expression ∆āw = eσ
2
ax − 1 makes no assump-

tions about the distribution of errors around E[W], other than that 
they are independent of x and ax.

Several miscellaneous comments on equations 6 and 7 may be 
useful. First, it is important to note that realized fitness is not as-
sumed to be log-normal. Rather this assumption applies to expected 
fitness given a value on the log-normal scale. Note also that the 
total variance in expected fitness, and therefore non-additive com-
ponents of variation in expected fitness, do not appear in equation 
7; these are not assumed to be absent, rather, they can have any ar-
bitrary (positive) variance. Finally, one should note while the change 
in relative fitness that follows from equation 7 is constant, if σ2

ax is 
constant, the change in absolute fitness is an accelerating function. 
Such an evolutionary dynamic is clearly unlikely to hold over more 
than a very few generations. This does not necessarily detract from 
the utility of this result for studying the dynamics of selection within 
generations, and of evolution from one generation to that which fol-
lows immediately.

Expected change in relative fitness, and the genotypic (as opposed 
to genetic) variance in relative fitness are, intriguingly, equal. The geno-
typic variance of fitness is the variance of expected fitness, or of ex-
pected fitness averaging over all possible environmental effects, given 
genetic value; for example, equation 5 gives the genotypic value for 
relative fitness, given genetic value. To show the relationship between 
evolution of fitness and the genotypic variance of relative fitness, it 
is simplest to begin with the genotypic value for absolute fitness. 
Individuals with additive genetic value for x of ax will have expected 

fitness that is lognormal with (log) mean µx + ax and variance σ2
ex.  

Expected absolute fitness on the data scale is E[W|ax] = eµx+ax+
σ2
ex
2 ,  

hence the distribution of genotypic values for expected fitness is 

also log normal, with mean µx +
σ2
ex
2  and variance 

σ2
ax
2 . The vari-

ance of a lognormal distribution, of an arbitrary random variable 

y, where log(y) ∼
Ä
µlog(y),σ2

log(y)

ä
 is σ2

y = e2µlog(y)+σ2
log(y)

(
eσ

2
log(y) − 1

)
 

(Aitchison and Brown 1957), so the variance of genotypic values for 
expected absolute fitness is

σ2
E[W|ax] = e

2

(
µx+

σ2
ex
2

)
+σ2

ax
Ä
eσ

2
ax − 1

ä
,

 (8)

σ2
E[W|ax] = W̄2

Ä
eσ

2
ax − 1

ä
,

where the simplification uses the expression for mean fitness given 
in equation 4. Relative fitness is the linear transformation of relative 

fitness according to w = 1
W̄W , and so the genotypic variance of rela-

tive fitness is

σ2
E[w|ax] =

Å
1
W̄

ã2
W̄2
Ä
eσ

2
ax − 1

ä
= eσ

2
ax − 1, (9)
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which coincides with equation 7 for the total between-generation 
change in relative fitness due to the response to selection and associ-
ated segregation distortion.

The genotypic variances in expected fitness referred to in equa-
tions 8 and 9 refer only to that component of the genotypic variance 
for fitness on the expected scale, that arises from the strictly additive 
component of variance on the log scale, due to the nonlinear expo-
nential relationship between the two scales. If there was non-additive 
genetic variance on the log scale, it would manifest as non-additive 
genetic variance (and potentially as additive genetic variance as 
well), on the expected fitness scale. Any such components of fitness 
would cause the genotypic variance of fitness to be some value other 
than that given by equation 9. Thus, it seems unlikely that this rela-
tion should be interpreted as giving the genotypic variance of fitness 
any simple and specific meaning with regards to the generation-to-
generation change in mean fitness due to natural selection. Rather, 
it should probably be interpreted as a coincidental relation that is 
unique to a model of log-normal and additive fitness.

An analogue of the Secondary Theorem of 
Selection, for a normal trait and log-normal 
expected fitness

Assume that a trait, z is influenced by additive genetic and environ-
mental effects according to zi = µz + az,i + ez,i. This model of pheno-
type is similar to that for log expected fitness in the previous section 
(equation 3a), and corresponds to a simple linear animal model ana-
lysis (Kruuk 2004; Wilson et al. 2010). Given the additive genetic 
(co)variance matrix of log expected fitness and a trait,

∑
a
=

ñ
σ2
ax σax,az

σax,azσ
2
az

ô
,

the expected genetic value of log fitness (ax) given genetic value for 
the trait(az) is

E[ax|az] = az

Ç
σax,az
σ2
az

å
,

where σax ,az

σ2
az

 is the genetic regression of log fitness on phenotype. The 

variance of genetic values for x, given genetic value for z is the condi-
tional genetic variance of log fitness, given phenotype (see Walsh and 
Blows 2009 for a review of the mathematical concept of conditional 
genetic variance),

σ2(ax|az) = σ2
ax − σ2

az

Ç
σax,az
σ2
az

å2

= σ2
ax −

(σax,az)
2

σ2
az

.

Relative fitness given az is then given by the expression for the mean 
of a log normal distribution, with location parameter µx + E[ax|az] 
and dispersion parameter representing all log-scale phenotypic vari-
ance that is independent of genetic variance in the trait, so

E[w|az] =
E[W|az]
W̄

=
e
µx+az

σax ,az
σ2
az

+

σ2
x−

(σax ,az )
2

σ2
az

2

eµx+
σ2
x
2

= e
2azσax ,az−(σax ,az )

2

2σ2
az .

The evolutionary change in the mean of z can then be obtained 
from the secondary theorem of selection, because the assumption of 
additivity in z guarantees that the genetic environment is constant 
for z. Thus, assuming that environmental effects are independent of 
genetic effects on z and x,

σaz,w = E[azE[w|az]]− E[az]E[w] = E[azE[w|az]]

σaz,w =

ˆ
aze

2azσax ,az−(σax ,az )
2

2σ2
az N(az,µx,σ2

x)daz

σaz,w = σax,az ,

 (10)

noting that āz = 0 by construction, and from equation 2, it 
follows that

∆āz = σax,az . (11)

So, the additive genetic covariance with relative fitness, and the 
additive genetic covariance with log expected absolute fitness are 
the same thing when expected fitness is log normal. The expression 
∆z̄ = σax,az  requires that genetic values for the trait and for log ex-
pected fitness are bivariate normal, but does not require equilibrium 
between the effects of selection and recombination on the genetic 
variance of z.

The analogue of the STS given in equation 11 is not subject to 
any segregation distortion under the assumptions used here, because 
we assume a linear relationship between az and z. Of course, a net 
phenotypic change given by this expression may be not realized even 
when the genetic assumptions used here hold, if the external envir-
onment changes.

An analogue of the Secondary Theorem  
of Selection, for a log-normal trait and  
log-normal expected fitness

Many traits are necessarily positive (e.g., morphology, expected rates 
of physiological processes or rates or expected counts of behavioural 
events, etc.), and consequently they should probably most pragmat-
ically be modeled as additive on a logarithmic scale. The within-
generation changes in such traits on the log scale can be modeled 
using equation 10. However, the realized change will be subject to 
distortion. Given the covariance of the logarithms of a trait and ex-
pected fitness

∑
a
=

ñ
σ2
ax σax,alog(z)

σax,alog(z)σ
2
alog(z)

ô
,

then the evolution of z between generations is simply given by

∆E[elog(z)] = eµlog(z)+σax ,alog(z)
+

σ2
log(z)
2 − eµlog(z)+

σ2
log(z)
2 ,

∆E[z] = eµlog(z)+
σ2
log(z)
2

(
eσax ,alog(z) − 1

)
.

 (12)

So, the analogue to the FTNS given in equation 7 acts as a scaling 
factor for the proportional change in any log-normal traits that 
may covary genetically with fitness on a log-log scale. This re-
sult applies at equilibrium between the effects of selection and 
recombination on the genetic variance of the log-normal trait; 
changes in the linkage disequilibrium contribution to σalog(z) due 
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to selection will generate additional, transient, responses to 
selection.

Consistency metrics under the analogues of 
the secondary theorem

The course of adaptive evolution is not normally predicted using 
the FTNS and/or the STS. Empirical operationalization of the ideas 
underlying these theorems requires estimation of some of the most 
challenging parameters in evolutionary quantitative genetics, genetic 
variances, and covariances pertaining to fitness. Estimates of these 
quantities are notoriously imprecise. Furthermore, measures of how 
phenotypes affect fitness – which are not components of the STS or 
FTNS, as they say nothing about how genetic variances and covari-
ances pertaining to fitness arise – can be much more informative 
about the ecology of natural selection. The main mechanisms for 
relating more ecologically informative measures of phenotypic selec-
tion to genetic variation to predict adaptive evolution is the breeder’s 
equation,

∆z̄ = GP−1S, (13a)

∆z̄ = Gβ, (13b)

these are thoroughly reviewed in chapter  13 of Walsh and Lynch 
(2018). The first expression is typically referred to as the multi-
variate breeder’s equation, and the second is often referred to as 
the Lande equation (that formulation arose in Lande 1979). G and 
P are matrices of (additive) genetic and phenotypic variances and 
correlations. S in equation 13a is the phenotypic selection differen-
tial, which may be defined equivalently as the change in the mean 
phenotype vector, within generations (Lush 1937), due to selection, 
or by the covariance of traits with relative fitness (see Robertson 
1966;Price1970; Walsh and Morrissey 2019) attempts to explain the 
equivalence to the former definition as simply as possible). β, termed 
the selection gradient vector, gives the partial regressions of relative 
fitness on phenotypes, which is equivalent to the derivative of rela-
tive fitness with respect to phenotype, averaged over the distribution 
of phenotype.

The equivalence of equation 13 parts a and b follows from 
the general relation for multiple regression, β =

∑−1
x

∑
xy, Where β 

are the partial regressions of y on the vector of predictor vari-
ables x, 

∑
x is the covariance matrix of x, and 

∑
xy is the vector 

of covariances of x and y. This same relation, applied to genetic 
components of phenotypic variance and covariance with fitness, 
is the basis of testing for consistency of the breeder’s equation 
with the STS. Application of the theorems of selection does not re-
quire referencers to phenotypic values of traits, and so any traits, 
or quantities in the environment that may vary among individ-
uals and cause trait-fitness covariance, that are not measured will 
not bias predictions of evolution. However, application of the 
theorems of selection provides no information about the ecology 
of why a given evolutionary trajectory does (or does not) occur. 
Therefore, a empirical motivation for using the theorems of se-
lection, particularly the STS, is to check that predictions based on 
the more informative breeder’s equation (equation 13, or further 
elaborations thereupon, e.g., Lande 1980, 1982; Morrissey 2014, 
2015) do not diverge from predictions of the STS, which is robust 
to missing traits.

Several measures of consistency between the breeder’s equation 
and the STS have been proposed (Rausher 1992; Morrissey et  al. 
2010) to directly use parameters related to the STS to test of the 
signatures of missing variables in phenotypic selection analysis (re-
viewed in Walsh and Lynch 2018). This section considers consist-
ency metrics as they relate to log-normal fitness distributions, and 
the STS, as in the previous two sections.

The consistency metric given in Morrissey et al. (2010) is based 
on the phenotypic, genetic, and environmental (residual, in a stat-
istical model) regressions of fitness on phenotype. The breeder’s 
equation is consistent with the STS when these regressions are 
equal. The necessary relations for application of this metric can be 
recovered for an analysis using log fitness by setting the STS (for 
multiple traits, i.e., ∆āz = σza,w) and the multivariate breeder’s equa-
tion ∆z̄ = GP−1S) to be equal. Subsequent manipulations then serve 
to illuminate the conditions under which they are in fact equal, or 
in other words, the conditions under which the predictions of the 
breeder’s equation are valid:

σa(z,w) = GP−1S, (14a)

G−1σa(z,w) = P−1S, (14b)

βa = βp. (14c)

In equation 14a, βa and βp are the additive genetic and pheno-
typic partial regressions of relative fitness on the traits. βa 
cannot be estimated directly from data, since the predictor vari-
ables – genetic values for the traits – cannot be directly observed, 
but mixed model analysis can be employed to estimate these 
(Morrissey et  al. 2010, 2012). From equation 11 it is apparent 
that the consistency metrics for a normal trait and log-normal 
fitness are the same expressions, but with log(E[W]) substituted 
for w. Since evolution of a trait is given by Gβ when all relevant 
variables are included in a selection analysis, consistency requires 
equality of the phenotypic regression of fitness on traits and the 
genetic regression of expected absolute fitness on traits. What 
may not be so immediately obvious is that the phenotypic regres-
sion may be expressed equivalently as either as the regression of 
relative fitness on traits, or as the regression of log absolute fitness  
on traits:

βi =

´
∂e

a+
∑

k
bjzj

∂zi
N(z̄, P)dz

´
ea+

∑
k
bjzjN(z̄, P)dz

βi =

´
bie

a+
∑

k
bjzjN(z̄, P)dz´

ea+
∑

k
bjzjN(z̄, P)dz

βi =
bi
´
ea+

∑
k
bjzjN(z̄, P)dz´

ea+
∑

k
bjzjN(z̄, P)dz

βi = bi

 (15)

see also (Morrissey and Goudie 2016) for more results per-
taining to selection gradients under fitness functions with an 
exponential form.

The same consistency metric also applies to the analogue of 
the STS for a log-normal trait. The phenotypic selection analysis 
that corresponds to the second STS analogue is one applied to 
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log-transformed phentopyic data. As such, it is expected that the 
change in genetic values on the log scale is given by the Lande equa-
tion and the STS in either its original form, or its analogue for a 
normal trait and log-normal fitness. So, from eq. 12, but substituting 
Gb for σaz,ax, and setting the STS analogue and evolutionary predic-
tions from the phenotypic analysis to be equal shows,

∆Ē[ez] = eµz+
σ2
z
2

Ä
eGβ − 1

ä

eµz+
σ2
z
2 (eσax ,az − 1) = eµz+

σ2
z
2

Ä
eGβ − 1

ä

σax,az = Gβ

G−1σax,az = β. 

(16)

So from equations 15 and 16, the consistency measure equivalent to 
equation 14a, but for an analysis involving genetic parameters of log 
fitness, and either a log or identity link function for traits, is that the 
genetic regression of log fitness on traits is the same as the pheno-
typic regression of log fitness on traits.

Discussion

The relationships given here between the genetic variance of log fit-
ness, and genetic covariances of traits with log fitness, are immediately 
amenable to statistical models that may be useful for empirical ana-
lyses of fitness in nature. Previous attempts to estimate quantitative 
genetic parameters relating to (relative) fitness have used models that 
assume Gaussian distributions for all characters, including fitness. This 
has been necessary, despite the fact that fitness residuals will almost 
always be extremely non-normal, because the biological questions at 
hand relate to relative fitness on the scale that it is observed. It has not 
been clear that conducting inferences on some other scale that might 
allow more sophisticated treatment of the distribution of fitness could 
still speak to the relevant biological questions. However, the expres-
sions given in this note show that fitness can in fact be directly analysed 
on the log scale, and its genetic variance, and genetic covariance with 
traits, on that scale, has direct relationships to evolutionary theory.

Any GLMM that treats a measure of fitness with a log-link func-
tion can generate estimates of σ2

a (x) and σa(z, x) (and for log-normal 
traits, of σa(log(z), x)). The key component of any such model is that 
a log-link function is used for fitness (and for a trait, if a log-normal 
model of the trait is desired). Any distribution of realized fitness 
around expected values could be useful. This will include the Poisson 
distribution and overdispersed Poisson distributions, both with addi-
tive and multiplicative (negative binomial) overdispersion. Other 
distributions that could potentially be accommodated with a log 
link function could include exponential and geometric distributions.

It will be very rare that a standard statistical distribution will 
very closely fit the distribution of errors of fitness - particularly of 
measures of lifetime fitness. It may be reasonable to hope that by 
using distributions for overdispersed count variables, such as the 
Poisson distribution with additive overdispersion, or the negative bi-
nomial distribution, will lead to more robust analyses than can be 
achieved with models that assume Gaussian distributions, but with 
parameters that directly reflect key quantities in the fundamental 
and secondary theorems of selection. It should be noted that there is 
no guarantee that GLMM-based analysis, since it will rarely closely 
reflect the processes that generate variation in fitness, will generate 
robust results. Similarly, it will not necessarily follow that any de-
ficiencies of model fit will necessarily seriously hinder inference of 
quantities such as σ2

a and σa(z, x). Any empirical applications making 
use the formulae given here should be accompanied by checks of the 

ability of the fitted model to recover basic parameters of the distri-
bution of observed fitness.
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1. Appendix

Intermediate steps in obtaining equation 4 are

Ē[W] =

ˆ
exN(x,µx,σ2

x)dx

=

ˆ
ex

1√
2πσ2

x

e
−(x−µx)

2

2σ2
x dx

=

ˆ
e
x− (x−µx)

2

2σ2
x

√
2πσx

dx

=

ñ
−1
2
eµx+

σ2
x
2 ERF

ñ
−x+ µx + σ2

x√
2σx

ô
+ C

ôx=∞

x=−∞

=

Å
−1
2
eµx+

σ2
x
2 (−1)

ã
−
Å
−1
2
eµx+

σ2
x
2 (+1)

ã

= eµx+
σ2
x
2 .

The fourth step relies on the fact that limx→∞ ERF
[
−x+µx+σ2

x√
2σx

]
= −1 

and limx→−∞ ERF
[
−x+µx+σ2

x√
2σx

]
= +1, where ERF denotes the error 

function.
Similarly, intermediate steps in obtaining equation 6 are

σaz,w =

ˆ
axeax−

σ2
ax
2 N(ax, 0,σ2

ax)dax

=

ˆ
axeax−

σ2
ax
2

1»
2πσ2

ax

e
−a2x
2σ2

ax dax

=

ˆ
axe

ax−
σ2
ax
2 − a2x

2σ2
ax»

2πσ2
ax

dax

=



1
2
σ2
axERF

ñ
ax − σ2

ax√
2σax

ô
− e

−(ax−σ2
ax

)
2

2σ2
ax

√
2π

+ C




ax=∞

ax=−∞

=

Ü
σ2
ax

2
(+1)− e

−(∞−σ2
ax

)
2

2σ2
ax

√
2π

ê

−

Ü
σ2
ax

2
(−1)− e

−(−∞−σ2
ax

)
2

2σ2
ax

√
2π

ê

= σ2
ax .

As for the detailed derivation of equation 4, the instances of the 
error function again take their maximum and minimum values of +1 
and –1, respectively. Additionally, the final step relies on noting that 

limy→∞ e
−(y−σ2

ax
)
2

2σ2
ax = 0 and limy→∞ e

−(−y−σ2
ax

)
2

2σ2
ax = 0. A detailed deriv-

ation of equation 11 is nearly identical.
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