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Quantitative genetic analyses require extensive measurements of phenotypic traits, a task that is often not trivial, especially in wild

populations. On top of instrumental measurement error, some traits may undergo transient (i.e., nonpersistent) fluctuations that

are biologically irrelevant for selection processes. These two sources of variability, which we denote here as measurement error in

a broad sense, are possible causes for bias in the estimation of quantitative genetic parameters. We illustrate how in a continuous

trait transient effects with a classical measurement error structure may bias estimates of heritability, selection gradients, and the

predicted response to selection. We propose strategies to obtain unbiased estimates with the help of repeated measurements taken

at an appropriate temporal scale. However, the fact that in quantitative genetic analyses repeated measurements are also used

to isolate permanent environmental instead of transient effects requires that the information content of repeated measurements

is carefully assessed. To this end, we propose to distinguish “short-term” from “long-term” repeats, where the former capture

transient variability and the latter help isolate permanent effects. We show how the inclusion of the corresponding variance

components in quantitative genetic models yields unbiased estimates of all quantities of interest, and we illustrate the application

of the method to data from a Swiss snow vole population.

KEY WORDS: Animal model, Breeder’s equation, error variance, permanent environmental effects, quantitative genetics,

Robertson–Price identity.

Quantitative genetic methods have become increasingly popu-

lar for the study of natural populations in the last decades, and

they now provide powerful tools to investigate the inheritance of

characters, and to understand and predict evolutionary change of

phenotypic traits (Falconer and Mackay 1996; Lynch and Walsh

1998; Charmantier et al. 2014). At its core, quantitative genetics

is a statistical approach that decomposes the observed pheno-

type P into the sum of additive genetic effects A and a residual

component R, so that P = A + R. For simplicity, nonadditive

genetic effects, such as dominance and epistatic effects, are ig-

nored throughout this article, thus the residual component can

be thought of as the sum of all environmental effects. This basic

model can be extended in various ways (Falconer and Mackay

1996; Lynch and Walsh 1998), with one of the most common
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being P = A + P E + R, where P E captures dependent effects,

the so-called permanent environmental effects, while R captures

the residual, independent variance that remains unexplained. Per-

manent environmental effects are stable differences among in-

dividuals above and beyond the permanent differences due to

additive genetic effects. In repeated measurements of an individ-

ual, these effects create within-individual covariation. To prevent

inflated estimates of additive genetic variance, these effects must

therefore be modeled and estimated (Lynch and Walsh 1998;

Kruuk 2004; Wilson et al. 2010).

This quantitative genetic decomposition of phenotypes is not

possible at the individual level in nonclonal organisms, but under

the crucial assumption of independence of genetic, permanent

environmental, and residual effects, the phenotypic variance at

the population level can be decomposed into the respective vari-

ance components as σ2
P = σ2

A + σ2
P E + σ2

R . These variance com-

ponents can then be used to understand and predict evolutionary

change of phenotypic traits. For example, the additive genetic

variance (σ2
A) can be used to predict the response to selection

using the Breeder’s equation. It predicts the response to selection

RBE of a trait z (bold face notation denotes vectors) from the prod-

uct of the heritability (h2) of the trait and the strength of selection

(S) as

RBE = h2 · S (1)

(Lush 1937; Falconer and Mackay 1996), where h2 is the propor-

tion of additive genetic to total phenotypic variance

h2 = σ2
A

σ2
P

, (2)

and S is the selection differential, defined as the mean pheno-

typic difference between selected individuals and the population

mean or, equivalently, the phenotypic covariance σp(z,w) be-

tween the trait (z) and relative fitness (w). Besides the Breeder’s

equation, evolution can be predicted using the secondary theo-

rem of selection, according to which evolutionary change is equal

to the additive genetic covariance of a trait with relative fitness,

that is,

RSTS = σa(z,w) (3)

(Robertson 1966; Price 1970). Morrissey et al. (2010, 2012) dis-

cuss the differences between the Breeder’s equation and the sec-

ondary theorem of selection in detail. A major difference is that in

contrast to RBE, RSTS only estimates the population’s evolutionary

trajectory, but does not measure the role of selection in shaping

this evolutionary change.

One measure of the role of selection is the selection gradient,

which quantifies the strength of natural selection on a trait. For

a normally distributed trait (z), it is given as the slope βz of the

linear regression of relative fitness on a phenotypic trait (Lande

and Arnold 1983), that is,

βz = σp(z,w)

σ2
p(z)

, (4)

where σ2
p(z) denotes the phenotypic variance of the trait, for which

we only write σ2
P when there is no ambiguity about what trait the

phenotypic variance refers to.

The reliable estimation of the parameters of interest (h2,

σp(z,w), σa(z,w), and βz), and the successful prediction of evolu-

tion as RBE or RSTS, require large amounts of data, often collected

across multiple generations and with known relationships among

individuals in the dataset. For many phenotypic traits of interest,

data collection is not trivial, and multiple sources of error, such

as phenotypic measurement error, pedigree errors (wrong rela-

tionships among individuals), or nonrandomly missing data may

affect the parameter estimates. Several studies have discussed and

addressed pedigree errors (e.g., Keller et al. 2001; Griffith et al.

2002; Senneke et al. 2004; Charmantier and Reale 2005; Hadfield

2008) and problems arising from missing data (e.g., Steinsland

et al. 2014; Wolak and Reid 2017). In contrast, although known

for a long time (e.g., Price and Boag 1987), the effects of phe-

notypic measurement error on estimates of (co-)variance compo-

nents have received less attention (but see, e.g., Hoffmann 2000;

Dohm 2002; Macgregor et al. 2006; van der Sluis et al. 2010;

Ge et al. 2017). In particular, general solutions to obtaining un-

biased estimates of (co-)variance parameters in the presence of

phenotypic measurement error are lacking.

In the simplest case, and the case considered here, phenotypic

measurement error is assumed to be independent and additive, that

is, instead of the actual phenotype z, an error-prone version

z� = z + e, e ∼ N(0, σ2
em

I) (5)

is measured, where e denotes an error term with independent cor-

relation structure I and error variance σ2
em

(see Lynch and Walsh

1998, p. 121). As a consequence, the observed phenotypic vari-

ance of the measured values is σ2
p(z�) = σ2

p(z) + σ2
em

, and thus

larger than the actual phenotypic variance. The error variance σ2
em

thus must be disentangled from σ2
p(z) to obtain unbiased estimates

of quantitative genetic parameters. However, most existing meth-

ods for continuous trait analyses that acknowledged measurement

error have modeled it as part of the residual component, and thus

implicitly as part of the total phenotypic value (e.g., Dohm 2002;

Macgregor et al. 2006; van der Sluis et al. 2010). This means

that in the decomposition of a phenotype, P = A + P E + R,

measurement error is absorbed in R, thus σ2
em

is absorbed by σ2
R .

This practice effectively downwardly biases measures that are

proportions of the phenotypic variance, in particular h2 and βz .
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To see why, let us denote the biased measures as h2
� and β�

z . The

biased version of heritability is then given as

h2
� = σ2

A

σ2
P + σ2

em

≤ σ2
A

σ2
P

(6)

because under the assumption taken here that measurement error

is independent of the actual trait value, measurement error is also

independent of additive genetic differences and therefore leaves

the estimate of the additive genetic variance σ2
A unaffected. This

was already pointed out, for example, by Lynch and Walsh (1998,

p. 121) or Ge et al. (2017). Equation (6) directly illustrates that h2
�

is attenuated by a factor λ = σ2
P/(σ2

P + σ2
em

), denoted as reliability

ratio (e.g., Carroll et al. 2006). Using the same argument, one can

show that β�
z = λβz , but also R�

BE = λRBE, as will become clear

later.

To obtain unbiased estimates of h2, βz , or any other quantity

that depends on unbiased estimates of σ2
P , it is thus necessary

to disentangle σ2
em

from the actual phenotypic variance σ2
P , and

particularly from its residual component σ2
R . Importantly, how-

ever, purely mechanistic measurement imprecision is often not

the only source of variation that may be considered irrelevant for

the mechanisms of inheritance and selection in the system under

study. Here, we therefore follow Ge et al. (2017) and use the term

“transient effects” for the sum of measurement errors plus any

biological short-term changes of the phenotype itself that are not

considered relevant for the selection process, briefly denoted as

“irrelevant fluctuations” of the actual trait.

As an example, if the trait is the mass of an adult animal,

repeated measurements within the same day are expected to differ

even in the absence of instrumental error, simply because animals

eat, drink, and defecate (for an example of the magnitude of these

effects see Keller and Van Noordwijk 1993). Such short-term

fluctuations might not be of interest for the study of evolutionary

dynamics, if the fluctuations do not contribute to the selection

process in a given population. Under the assumption that these

fluctuations are additive and independent among each other and of

the actual trait value, they are mathematically indistinguishable

from pure measurement error. In the remainder of the article,

we therefore do not introduce a separate notation to discriminate

between (mechanistic) measurement error and biological short-

term fluctuations, but treat them as a single component (e) with a

total “error” variance σ2
em

. Consequently, we may sometimes refer

to “measurement error” when in fact we mean transient effects as

the sum of measurement error and transient fluctuations.

The aim of this article is to develop general methods to

obtain unbiased estimates of heritability, selection, and response

to selection in the presence of measurement error and irrelevant

fluctuations of a trait, building on the work by Ge et al. (2017).

We start by discussing the meaning and information content of

repeated phenotypic measurements on the same individual. The

type of phenotypic trait we have in mind is a relatively plastic

trait, such as milk production or an animal’s mass, which are

expected to undergo changes across an individual’s life span that

are relevant for selection. We point out that repeated measures

taken over different time intervals can help separate transient

effects from more stable (permanent) environmental and genetic

effects, and that based on such a variance decomposition it is

possible to formulate models that yield unbiased estimates of

heritability, selection, and the response to selection. We illustrate

these approaches with empirical quantitative trait analyses of body

mass measurements taken in a population of snow voles in the

Swiss alps (Bonnet et al. 2017).

Theory
SHORT- AND LONG-TERM REPEATED

MEASUREMENTS

Table 1 gives an overview of how the different parameters con-

sidered here are (or are not) affected by the presence of measure-

ment error. To retrieve unbiased estimates of all quantities given

in Table 1, we must be able to appropriately model and estimate

the measurement error variance σ2
em

, which can be achieved with

repeated measurements. These repeated measurements must be

taken in close temporal vicinity, that is, on a time scale where the

focal trait is not actually undergoing any phenotypic changes that

are considered relevant for selection. We introduce the notion of a

measurement session for such short-term time intervals. In other

words, a measurement session can be defined as a sufficiently

short period of time during which the investigator is willing to as-

sume that the residual component is constant. On the other hand,

measurements are often repeated across much longer periods of

time, such as months, seasons, or years, during which phenotypic

change is not expected to be solely due to transient effects, and

the resulting trait variation is often relevant for selection. Thus,

long-term repeats, taken across different measurement sessions,

help separating permanent environmental effects from residual

components (e.g., Wilson et al. 2010).

The distinction between short- and long-term repeats, and

thus the definition of a measurement session, may not always

be obvious or unique for a given trait. In the introduction, we

employed the example of an animal’s mass that transiently fluc-

tuates within a day. Depending on the context, such fluctuations

might not be of interest, and the “actual” phenotypic value would

correspond to the average daily mass. A reasonable measurement

session could then be a single day, and within-day repeats can

thus be used to estimate σ2
em

. If however any fluctuations in body

mass are of interest, irrespective of how persistent they are, much

shorter measurement sessions, such as seconds or minutes, would

be appropriate to ensure that only the purely mechanistic mea-

surement error variance is represented by σ2
em

.
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Figure 1. Schematic representation of three study designs, where

one individual is measured (A) multiple times across multiple mea-

surement sessions, (B) multiple times in one single measurement

measurement session, or (C) one single time across multiple mea-

surement sessions. Only case (A) allows to disentangle the mea-

surement error variance σ2
em

and the permanent environmental

effects σ2
PE from σ2

R , whereas case (B) allows to separate only the

measurement error variance and case (C) only allows to disentan-

gle permanent environmental from residual effects.

REPEATED MEASUREMENTS IN THE ANIMAL MODEL

In the following, we show how measurement error can be incor-

porated in the key tool of quantitative genetics, the animal model,

a special type of (generalized) linear mixed model, which is com-

monly used to decompose the phenotypic variance of a trait into

genetic and nongenetic components (Henderson 1976; Lynch and

Walsh 1998; Kruuk 2004).

Let us assume that phenotypic measurements of a trait are

blurred by measurement error following model (5), and that mea-

surements have been taken both across and within multiple mea-

surement sessions, as indicated in Fig. 1A. Denoting by z�
ijk the

k th measurement of individual i in session j , it is possible to fit

a model that decomposes the trait value as

z�
ijk = μ + x�

ijkβ + ai + idi + Rij + eijk, (7)

where μ is the population intercept, β is a vector of fixed ef-

fects, and xijk is the vector of covariates for measurement k in

session j of animal i . The remaining components are the random

effects, namely the breeding value ai with dependency struc-

ture (a1, . . . , an)T ∼ N(0, σ2
AA), an independent, animal-specific

permanent environmental effect idi ∼ N(0, σ2
P E ), an independent

Gaussian residual term Rij ∼ N(0, σ2
R), and an independent error

term eijk ∼ N(0, σ2
em

) that absorbs any transient effects captured

by the within-session repeats. The dependency structure of the

breeding values ai is encoded by the additive genetic relatedness

matrix A (Lynch and Walsh 1998), which is traditionally derived

from a pedigree, but can alternatively be calculated from genomic

data (Meuwissen et al. 2001; Hill 2014). The model can be further

expanded to include more fixed or random effects, such as ma-

ternal, nest, or time effects, but we omit such terms here without

loss of generality. Importantly, model (7) does not require that all

individuals have repeated measurements in each session to obtain

an unbiased estimate of the variance components in the presence

of measurement error. In fact, even if there are, on average, fewer

than two repeated measurements per individual within sessions,

it may be possible to separate the error variance from the residual

variance, as long as the total number of within-session repeats

over all individuals is reasonably large. We will in the following

refer to model (7) as the “error-aware” model.

If, however, a trait has not been measured across different

time scales (i.e., either only within or only across measurement

sessions), not all variance components are estimable. In the first

case, when repeats are only taken within a single measurement

session for each individual, as depicted in Fig. 1B, an error term

can be included in the model, but a permanent environmental

effect cannot. The model must then be reduced to

z�
ik = μ + x�

ikβ + ai + Ri + eik, (8)

thus it is possible to estimate the error variance σ2
em

and to obtain

unbiased estimates of σ2
A and h2, whereas the residual variance σ2

R

then also contains the permanent environmental variance. In the

second case, when repeated measurements are only available from

across different measurement sessions, as illustrated in Fig. 1C,

the error variance cannot be estimated. Instead, an animal-specific

permanent environmental effect can be added to the model, which

is then given as

z�
ij = μ + x�

ij β + ai + idi + Rij (9)

for the measurement in session j for individual i . Interest-

ingly, this last model mirrors the types of repeats that motivated
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quantitative geneticists to isolate σ2
PE, which may otherwise be

confounded not only with σ2
R , but also with σ2

A. This occurs be-

cause the repeated measurements across sessions induce an in-

creased within-animal correlation (i.e., a similarity) that may be

absorbed by σ2
A if not modeled appropriately (Kruuk and Hadfield

2007; Wilson et al. 2010).

MEASUREMENT ERROR AND SELECTION

Selection occurs when a trait is correlated with fitness, such that

variations in the trait values lead to predictable variations among

the same individuals in fitness. The leading approach for measur-

ing the strength of directional selection is the one developed by

Lande and Arnold (1983), who proposed to estimate the selection

gradient βz as the slope of the regression of relative fitness w on

the phenotypic trait z:

w = α + βz · z + ε, (10)

with intercept α and residual error vector ε. This model can be

further extended to account for covariates, such as sex or age.

If the phenotype z is measured with error (which may again

encompass any irrelevant fluctuations), such that the observed

value is z� = z + e with error variance σ2
em

as in (5), the regression

of w against z� leads to an attenuated version of βz (Fuller 1987;

Mitchell-Olds and Shaw 1987; Carroll et al. 2006). Using that

β̂z = σp(z,w)
σ2

p(z) , σ2
p(z�) = σ2

p(z) + σ2
em

, and the assumption that the

error in z� is independent of w, simple calculations show that the

error-prone estimate of selection is

β̂�
z = σp(z�,w)

σ2
p(z�)

= σp(z,w)

σ2
p(z) + σ2

em

≤ β̂z .

Hence, the quantity that is estimated is β�
z = λβz with λ =

σ2
p(z)/(σ2

p(z) + σ2
em

), thus βz suffers from exactly the same bias

as the estimate of heritability (see again Table 1). To obtain an

unbiased estimate of selection it may thus often be necessary

to account for the error by a suitable error model. Such error-

aware model must rely on the same type of short-term repeated

measurements as those used in (7) or (8), but with the additional

complication that z is now a covariate in a regression model, and

no longer the response. To estimate an unbiased version of βz ,

we therefore rely on the interpretation as an error in variables

problem for classical measurement error (Fuller 1987; Carroll

et al. 2006). To this end, we propose to formulate a Bayesian

hierarchical model, because this formulation, together with the

possibility to include prior knowledge, provides a flexible way

to model measurement error (Stephens and Dellaportas 1992;

Richardson and Gilks 1993). To obtain an error-aware model that

accounts for error in selection gradients, we need a three-level

hierarchical model: the first level is the regression model for

selection, and the second level is given by the error model of the

observed covariate z� given its true value z. Third, a so-called

exposure model for the unobserved (true) trait value is required to

inform the model about the distribution of z, and it seems natural

to employ the animal model (9) for this purpose. Again using the

notation for an individual i measured in different sessions j and

with repeats k within sessions, the formulation of the three-level

hierarchical model is given as

wij = α + βz zij + x�
ij β + εij, εij ∼ N

(
0, σ2

ε

)
Selection model (11a)

z�
ijk = zij + eijk , eijk ∼ N

(
0, σ2

em

)
Error model (11b)

zij = μ + x�
ij γ + ai + idi + Rij, Rij ∼ N

(
0, σ2

R

)
Exposure model (11c)

where wij is the measurement of relative fitness for individual i ,

usually taken only once per individual and having the same value

for all measurement sessions j , β is a vector of fixed effects, xij

is the vector of covariates for animal i in measurement session

j , βz is the selection gradient, and α and εij are, respectively,

the intercept and the independent residual term from the linear

regression model. The classical independent measurement error

term is given by eijk, and the vector of fixed effects in the exposure

model is now denoted as γ to discriminate it from β in the selection

model. This formulation as a hierarchical model gives an unbiased

estimate of the selection gradient βz , because the lower levels

of the model properly account for the error in z by explicitly

modeling it. It might be helpful to see that the second and third

levels are just a hierarchical representation of model (7). Model

(11a–c) can be fitted in a Bayesian setup, see for instance Muff et

al.(2015) for a description of the implementation using integrated

nested Laplace approximations (INLA) (Rue et al. 2009) via its

R interface R-INLA.

Note that the selection model (11a) is formulated here for di-

rectional selection. Although the explicit discussion of alternative

selection mechanisms, such as stabilizing or disruptive selection,

is beyond the scope of the present article, we note that error mod-

eling for these cases is straightforward: The only change is that the

linear selection model is replaced by the appropriate alternative,

for example by including quadratic or any other kind of nonlinear

terms (e.g. Fisher 1930; Lande and Arnold 1983). Moreover, (11a)

can be replaced by any other regression model, for example by

one that accounts for nonnormality of fitness (see e.g., Morrissey

and Sakrejda 2013; Morrissey and Goudie 2016). Similarly, it is

conceptually straightforward to replace the Gaussian error and
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Table 1. Overview of the effects of measurement error and transient fluctuations (abbreviated as ME) on important quantitative genetic

parameters.

Parameter Notation Effect of ME Biased parameter

Additive genetic variance σ2
A Unbiased –

Permanent environmental variance σ2
PE Unbiased –

Residual variance σ2
R Biased σ2

R + σ2
e

Heritability h2 Biased λh2

Selection gradient βz Biased λβz

Phenotypic covariance σp(z,w) = S Unbiased –
Response to selection (STS) σa(z,w) = RSTS Unbiased –
Response to selection (BE) RBE Biased λRBE

Evolvability I Unbiased –

The table indicates for each parameter whether it is biased or unbiased. For biased parameters the quantities that are estimated when ignoring transient

effects in the quantitative genetic models are given. λ is the reliability ratio, defined as λ = σ2
P

σ2
P +σ2

em
. For notation see the main text.

exposure models, if there is reason to believe that the normal

assumptions for the error term eijk or the residual term Rij are

unrealistic, for example if z is a count or a binary variable.

In fact, equation (10) to estimate selection does not actually

assume a specific distribution for z, however, the interpreta-

tion of βz as a directional selection gradient to predict evo-

lutionary change may be lost for non-Gaussian traits (Lande

and Arnold 1983). Finally and importantly, although multivari-

ate selection is not covered in the present article, it is possi-

ble to extend the hierarchical model (11a–c) to the multivariate

case.

MEASUREMENT ERROR AND THE RESPONSE TO

SELECTION

The Breeder’s equation
Evolutionary response to a selection process on a phenotypic

trait can be predicted either by the Breeder’s equation (1) or by

the Robertson–Price identity (3), and these two approaches are

equivalent only when the respective trait value (in the univari-

ate model) is the sole causal factor affecting fitness (Morrissey

et al. 2010, 2012). Even if the Breeder’s equation is formulated

for multiple traits, the implicit assumption still is that all corre-

lated traits causally related to fitness are included in the model.

Given that fitness is a complex trait that usually depends on many

unmeasured variables (Møller and Jennions 2002; Peek et al.

2003), it is not surprising that the Breeder’s equation is often not

successful in predicting evolutionary change in natural systems

(Hadfield 2008; Morrissey et al. 2010), in contrast to (artificial)

animal breeding situations, where, thanks to the control over the

process, all the traits affecting fitness are known and included

in the models (Lush 1937; Falconer and Mackay 1996; Roff

2007).

To understand how transient effects affect the estimate of

RBE = h2 · S, we must understand how the components h2 and S

are affected. We have seen that h2
� = λh2. On the other hand, the

selection differential S� = σp(z�,w) is an unbiased estimate of

σp(z,w), because under the assumption of independence of the

error vector e and fitness w,

σp(z�, w) = σp(z + e, w) = σp(z,w) + σp(e,w)︸ ︷︷ ︸
=0

= σp(z, w). (12)

Consequently, the bias in h2
� directly propagates to the estimated

response to selection, that is, R�
BE = λRBE (Table 1).

The Robertson–Price identity
Response to selection can also be predicted using the secondary

theorem of selection. Specifically, the additive genetic covariance

of the relative fitness w and the phenotypic trait z, σa(w, z), can

be estimated from a bivariate animal model. If interest centers

around the evolutionary response of a single trait, the model for

the response vector including the (error-prone) trait values z� and

relative fitness values w is bivariate with

[
z�

w

]
= μ + Xβ + Da + Zr, (13)

where μ is the intercept vector, β the vector of fixed effects, X
the corresponding design matrix, D is the design matrix for the

breeding values a, and Z is a design matrix for additional random

terms r . These may include environmental and/or error terms,

depending on the structure of the data, that may correspond to the

univariate cases of equations (7)–(9), or again to other random

terms such as maternal or nest effects. The actual component
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of interest is the vector of breeding values, which is assumed

multivariate normally distributed with

a =
[

a(z�)

a(w)

]
∼ N

(
0,

[
σ2

a(z�)A σa(w, z�)A
σa(w, z�)A σ2

a(w)A

])
, (14)

where a(z�) and a(w) are the respective subvectors for the trait

and fitness, and A is the relationship matrix derived from the

pedigree. An estimate of the additive genetic covariance σa(w, z�)

is extracted from this covariance matrix. An interesting feature of

the additive genetic covariance, and consequently estimates of

the response to selection using the STS, is that it is unbiased by

independent error in the phenotype. This can be seen by reiterating

the exact same argument as in equation (12), but replacing the

phenotypic with the genetic covariance.

We confirmed all these theoretical expectations with a simu-

lation study, where we analyzed the effects of measurement error

on the estimates of interest by adding error terms with different

variances to the phenotypic traits. Details and results of the sim-

ulations are given in Appendix S2, whereas the code for their

implementation is reported in Appendix S3.

Empirical Example
DATA AND MODELS FOR BODY MASS OF SNOW

VOLES

The empirical data we use here stem from a snow vole popu-

lation that has been monitored between 2006 and 2014 in the

Swiss Alps (Bonnet et al. 2017). The genetic pedigree is available

for 937 voles, together with measurements on morphological and

life-history traits. Thanks to the isolated location, it was possi-

ble to monitor the whole population and to obtain high recap-

ture probabilities (0.924 ± 0.012 for adults and 0.814 ± 0.030

for juveniles). Details of the study are given in Bonnet et al.

(2017).

Our analyses focused on the estimation of quantitative ge-

netic parameters for the animals’ body mass (in grams). The

dataset contained 3266 mass observations from 917 different

voles across nine years. Such measurements are expected to suf-

fer from classical measurement error, as they were taken with

a spring scale, which is prone to measurement error under field

conditions. In addition, the actual mass of an animal may contain

irrelevant within-day fluctuations (eating, defecating, digestive

processes), but also unknown pregnancy conditions in females,

which cannot reliably be determined in the field. Repeated mea-

surements were available, both recorded within and across dif-

ferent seasons. In each season two to five “trapping sessions”

were conducted, which each lasted four consecutive nights. Al-

though this definition of measurement session was based purely

on operational aspects driven by the data collection process, we

used this time interval to estimate σ2
em

. It is arguably possible

that four days might be undesirably long, and that variability in

such an interval includes more than purely transient effects, but

the data did not allow for a finer time resolution. However, to

illustrate the importance of the measurement session length, we

also repeated all analyses with measurement sessions defined as

a calendar month, which is expected to identify a larger (and

probably too high) proportion of variance as σ2
em

. The number

of four-day measurement sessions per individual was on average

3.02 (min = 1, max = 24) with 1.15 (min = 1, max = 3) number

of short-term repeats on average, whereas there were 2.37 (min =
1, max = 13) one-month measurement sessions on average, with

1.41 (min = 1, max = 6) short-term repeats per measurement

session.

Heritability
Bonnet et al. (2017) estimated heritability using an animal model

with sex, age, Julian date (JD), squared Julian date, and the two-

and three-way interactions among sex, age, and Julian date as

fixed effects. The inbreeding coefficient was included to avoid

bias in the estimation of additive genetic variances (de Boer and

Hoeschele 1993). The breeding value (ai ), the maternal iden-

tity (mi ), and the permanent environmental effect explained by

the individual identity (idi ) were included as individual-specific

random effects.

If no distinction is made between short-term (within mea-

surement session) and long-term (across measurement sessions)

repeated measurements, the model that we denote as the naive

model is given as

z�
ijk = μ + x�

ijkβ + ai + mi + idi + Rijk, (15)

where z�
ijk is the mass of animal i in measurement session j

for repeat k. This model is prone to underestimate heritability,

because it does not separate the variance σ2
em

from the residual

variability, and σ2
em

is thus treated as part of the total phenotypic

trait variability. To isolate the measurement error variance, the

model expansion

z�
ijk = μ + x�

ijkβ + ai + mi + idi + Rij + eijk,

with Rij ∼ N(0, σ2
R) and eijk ∼ N(0, σ2

em
) leads to what we denote

here as the error-aware model. Under the assumption that the

length of a measurement session was defined in an appropriate

way, and that the error obeys model (5), this model yields an

unbiased estimate of h2, calculated as σ2
A

σ2
A+σ2

M +σ2
P E +σ2

R
(in agreement

with Bonnet et al. 2017), where σ2
em

is explicitly estimated and thus

not included in the denominator. Both models were implemented

in MCMCglmm Hadfield (2010) and are reported in Appendix S4.

Inverse gamma priors IG(0.01, 0.01), parameterized with shape

and rate parameters, were used for all variances in all models,
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Table 2. Estimates of quantitative genetic parameters of body mass in snow voles using naive and error-aware models.

Model ĥ2 σ̂2
A σ̂2

PE σ̂2
M σ̂2

R σ̂2
em

Naive 0.14 3.40 6.09 1.16 12.40 –
[0.07, 0.25] [1.41, 6.15] [4.33, 8.51] [0.56, 2.84] [11.78, 13.21]

Error-aware
(four-day measurement session) 0.23 3.97 5.62 1.48 6.58 6.07

[0.09, 0.33] [1.46, 6.06] [3.68, 7.68] [0.57, 2.73] [5.76, 7.82] [5.54, 7.05]
Error-aware

(one-month measurement session) 0.24 3.82 4.78 1.58 5.77 7.91
[0.10, 0.37] [1.17, 5.84] [3.16, 7.21] [0.61, 2.86] [4.78, 6.71] [7.15, 8.38]

The posterior modes of variance components and heritability are given, together with their 95% credible intervals (in brackets).

whereas N(0, 1012) (i.e., default MCMCglmm) priors were given to

the fixed effect parameters. Analyses were repeated with varying

priors on σ2
em

for a sensitivity check, but results were very robust

(results not shown).

Selection
Selection gradients were estimated from the regression of relative

fitness (w) on body mass (z�). Relative fitness was defined as the

relative lifetime reproductive success (rLRS), calculated as the

number of offspring over the lifetime of an individual, divided

by the population mean LRS. The naive estimate of the selection

gradient was obtained from a linear mixed model (i.e., treating

rLRS as continuous trait), where body mass, sex, and age were in-

cluded as fixed effects, plus a cohort-specific random effect. The

error-aware version of the selection gradient βz was estimated us-

ing a three-layer hierarchical error model as in (11a–c) that also

included a random effect for cohort in the regression model. Sex

and age were also included as fixed effects in the exposure model,

plus breeding values, permanent environmental and a residual

term as random effects. The hierarchical model used to estimate

the error-aware βz was implemented in INLA and is described in

Appendix S1, with R code given in Appendix S5. Again, IG(0.01,

0.01) priors were assigned to all variance components, whereas

independent N(0, 102) priors were used for all slope parameters.

Because rLRS is not actually a Gaussian trait, P values and CIs of

the estimate for βz from the linear regression model are, however,

incorrect. Although recent considerations indicate that selection

gradients could directly be extracted from an overdispersed Pois-

son model (Morrissey and Goudie 2016), we followed the original

analysis of Bonnet et al. (2017) and extracted P values from an

overdispersed Poisson regression model with absolute LRS as a

count outcome, both for the (naive) model without error model-

ing and for the hierarchical error model, where the linear model

(11c) was replaced by an overdispersed Poisson regression model

(Appendices S1 and S5 include the model description and code

for both models).

Response to selection
Response to selection on body mass was estimated with rLRS

using the Breeder’s equation (1) and the secondary theorem of

selection (3), both for the naive and the error-aware versions

of the model. The naive and error-aware versions of RBE were

estimated by substituting either the naive h2
� or the error-aware

estimates of h2 into the Breeder’s equation, where the selection

differential was calculated as the phenotypic covariance between

mass and rLRS. On the other hand, RSTS was estimated from the

bivariate animal model, implemented in MCMCglmm using the

same fixed and random effects as those in equation (15). Again

IG(0.01, 0.01) priors were used for the variance components. No

residual component was included for the fitness trait, as suggested

by Morrissey et al. (2012), and its error variance was fixed at 0,

because no error modeling is required. Appendix S6 contains the

respective R code.

SNOW VOLES RESULTS

Heritability
As expected from theory (Table 1), transient effects in the mea-

surements of body mass biased some, but not all, quantitative

genetic estimates in our snow vole example (Table 2). The esti-

mates and confidence intervals of the additive genetic variance

σ2
A, as well as the permanent environmental variance σ2

PE and the

maternal variance (denoted as σ2
M ) were only slightly corrected

in the error-aware models. Residual variances, however, were

much lower when measurement error was accounted for in the

models. The error-aware model separated residual and transient

(error) variance so that σ̂2
R + σ̂2

em
corresponded approximately to

σ̂2
R from the naive model. The overestimation of the residual vari-

ance resulted in estimates of heritability that were underestimated

by nearly 40% when measurement error was ignored (ĥ2 = 0.14

in the naive model and ĥ2 = 0.23 in the error-aware model).

As expected, the estimated measurement error variance was

larger when a measurement session is defined as a full month

(σ̂2
em

= 7.91) than as a 4-day interval (σ̂2
em

= 6.07; Table 2),
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Table 3. Estimates of selection gradients (β̂z) for body mass in

snow voles derived from naive (ML estimate) and error-aware

models (posterior means).

Model β̂z P-value

Naive 0.065 <0.001
Error-aware (four-day

measurement session)
0.104 <0.001

Error-aware (one-month
measurement session)

0.104 <0.001

For all models, Bayesian P values were derived from zero-inflated Poisson

regressions.

because the trait then has more time and opportunity to change.

As a consequence, heritability is even slightly higher (ĥ2 = 0.24)

when the longer measurement session definition is used. This

example is instructive because it underlines the importance of

defining the time scale at which short-term repeats are expected

to capture only transient, and not biologically relevant variability

of the phenotypic trait. In the case of the mass of a snow vole,

most biologists would probably agree that changes in body mass

over a one-month measurement session may well be biologically

meaningful and relevant (i.e., body fat accumulation, pregnancy

in females, etc.), while it is less clear how much of the fluctuations

within a 4-day measurement session are transient, and what part

of it would be relevant for selection. Within-day repeats might

be the most appropriate for the case of mass, because within-day

variance is likely mostly transient, but because the data were not

collected with the intention to quantify such effects, within-day

repeats were not available in sufficient numbers in our example

dataset.

Selection
As expected, estimates of selection gradients (β̂z) obtained with

the naive models provided nearly 40% lower estimates of selec-

tion than the error-aware model (Table 3). The two measurement

session lengths yielded similar results. With and without measure-

ment error modeling, the P values of the zero-inflated Poisson

models confirmed the presence of selection on body mass in snow

voles (P < 0.001 in all models).

Response to selection
In line with theory, estimates of the response to selection using the

Breeder’s equation were nearly 40% lower when transient effects

were not incorporated in the quantitative genetic models using

four-day measurement sessions (R̂BE = 0.10 in the naive model

and R̂BE = 0.16 in the error-aware model; Table 4). As in the case

of heritability, the one-month measurement session definition re-

sulted in even slightly higher estimates of the response to selection

(R̂BE = 0.17). In contrast, response to selection measured by the

secondary theorem of selection R̂STS did not show evidence of

bias, and the error-aware model with a four-day measurement

session definition estimated the same value (R̂STS = −0.17) as

the naive model (Table 4). With a one-month measurement ses-

sion, we obtained a slightly attenuated value (R̂STS = −0.14),

although the difference was small in comparison to the credible

intervals (Table 4).

This example illustrates that the Breeder’s equation is gen-

erally prone to underestimation of the selection response in

real study systems when measurement error in the phenotype

is present (Table 1). The results also confirm that estimates for re-

sponse to selection may differ dramatically between the Breeder’s

equation and the secondary theorem of selection. As already no-

ticed by Bonnet et al. (2017), the predicted evolutionary response

derived from the Breeder’s equation points in the opposite di-

rection in the snow vole data than the estimate derived from

the secondary theorem of selection (e.g., naive estimates R̂BE =
0.10 vs. R̂STS = −0.17, with nonoverlapping credible intervals;

Table 4).

Discussion
This study addressed the problem of measurement error and tran-

sient fluctuations in continuous phenotypic traits in quantitative

genetic analyses. We have shown that measurement error and

transient fluctuations can lead to substantial bias in estimates

of several important quantitative genetic parameters, including

heritability, selection gradients, and the response to selection

(Table 1). We introduced modeling strategies to obtain unbiased

estimates in these parameters in the presence of measurement

error and transient fluctuations. These strategies rely on the dis-

tinction between variability from stable effects that are part of the

biologically relevant phenotypic variability, and transient effects,

which are the sum of mechanistic measurement error and biolog-

ical fluctuations that are considered irrelevant for the selection

process. We argue that ignoring the distinction between stable

and transient effects may not only lead to an underestimation of

the heritability due to inflated estimates of the residual variance,

σ2
R , but also to bias in the estimates of selection gradients and

the response to selection. Measurements of the same individual

repeated at appropriate time scales allow the variance from such

transient effects to be partitioned, and thus prevent such bias.

How can repeated measurements be used to prevent an un-

derestimation of heritability, selection, and response to selection,

while permanent environment effects are required in quantitative

genetic models of repeated measures to avoid an upward bias

of σ2
A and, hence, an overestimation of h2 (Wilson et al. 2010)?

The fact that repeated measurements are used to prevent opposite
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Table 4. Response to selection for body mass in snow voles (posterior modes and 95% credible intervals) estimated with the Breeder’s

equation ( R̂BE) and with the secondary theorem of selection ( R̂STS).

Model R̂STS 95% CI R̂BE 95% CI

Naive −0.17 [−0.54, 0.18] 0.10 [0.05, 0.17]
Error-aware (four-day measurement session) −0.17 [−0.51, 0.19] 0.16 [0.06, 0.23]
Error-aware (one-month measurement session) −0.14 [−0.53, 0.17] 0.17 [0.07, 0.26]

Results are shown for the naive and the error-aware models.

biases in heritability estimates makes it apparent that the informa-

tion content in what is termed “repeated measurements” in both

cases is very different. The crucial aspect is that it matters at which

temporal distance the repeats were taken, and that the relevance

of this distance depends on the kind of trait under study. Repeats

taken on the same individual at different life stages (“long-term”

repeats, e.g., across what we call measurement sessions here) can

be used to separate the animal-specific permanent environmen-

tal effect from both genetic and residual variances. On the other

hand, repeats taken in temporal vicinity (“short-term” repeats,

e.g., within a measurement session) help disentangle any tran-

sient from the residual effects. Only by modeling both types of

repeats, that is, across different relevant time scales, is it practi-

cally feasible to separate all variance components. To do so, the

quantitative genetic model for the trait value, typically the animal

model, needs extension to three levels of measurement hierar-

chy (eq. 7): the individual (i), the measurement session ( j within

i), and the repeat (k within j within i). As highlighted with the

snow vole example, it may not always be trivial to determine, in

a particular system, an appropriate distinction between short- and

long-term repeats, and consequently how to define a measure-

ment session. This decision must be driven by the definition of

short-term variation as a variation that is not “seen” by the selec-

tion process (see, e.g., Price and Boag 1987, p. 279 for a similar

analogy) in contrast to persistent effects that are potentially under

selection. This distinction ultimately depends on the trait, on the

system under study and on the research question that is asked,

because some traits may fluctuate on extremely short time scales

(minutes or days), whereas others remain constant across an entire

adult’s life.

The application to the snow vole data, where we varied the

measurement session length from four days to one month, il-

lustrated that longer measurement sessions automatically capture

more variability, that is, the estimated error variance σ̂2
em

increased.

Consequently, unreasonably long measurement sessions may lead

to overcorrected estimates of the parameters of interest. On the

other hand, considering measurement sessions that are too short

may lead to an insufficient number of within-session repeats, or

they may fail to identify transient variability that is biologically

irrelevant. This makes clear that a careful definition of measure-

ment session length is important already at the design stage of a

study.

If one is uncertain whether repeated measurements capture

effects relevant to selection or not, would averaging over re-

peats result in better estimates of quantitative genetic measures?

Averaging methods have been proposed specifically to reduce

bias that emerges due to measurement error and transient effects

(Carbonaro et al. 2009; Zheng et al. 2016). Although averaging

will alleviate bias by reducing the error variance in the mean, it

will not eliminate it completely. This can be seen from the fact that

averaging over K within-session repeats for all animals and mea-

surement sessions, the variance σ2
em

is reduced to σ2
em

= σ2
em

/K ,

assuming independence of the error term. Unless K is large, σ2
em

will not approach zero. Moreover, this practice only works if all

animals have the same number of repeats within all measurement

sessions, but it will not work in the unbalanced sampling design

so common in studies of natural populations.

We approached the problem of measurement error and tran-

sient fluctuations by assuming a dichotomous distinction between

short- and long-term repeats. This requires determining the tem-

poral scale of measurement sessions, something that is likely

highly trait and context specific. An alternative perspective of

within-animal repeated measurements could take a continuous

view, recalling that repeated measurements are usually correlated,

even when taken across long time spans, and that the correlation

increases the closer in time the measurements were taken. A more

sophisticated model could thus take into account that the resid-

ual component in the model changes continuously, and introduce

a time-dependent correlation structure instead of simply distin-

guishing between short- and long-term repeats. Such a model

might be beneficial if repeats were not taken in clearly defined

measurement sessions, although such a temporal correlation term

introduces another level of model complexity, and thus entails

other challenges.

It may sometimes not be possible to take multiple measure-

ments on the same individual, or to repeat a measurement within

a session. However, it may still be feasible to include an appropri-

ate random effect in the absence of short-term repeats, provided

that knowledge about the error variance is available, for example,

from previous studies that used the same measurement devices,
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from a subset of the data, or from other “expert” knowledge. The

Bayesian framework is ideal in this regard, because it is straight-

forward to include random effects with a very strong (or even

fixed) prior on the respective variance component. Such Bayesian

models provide error-aware estimates that are equivalent to those

illustrated in Table 1, but with the additional advantage that pos-

terior distributions naturally reflect all uncertainty that is present

in the parameters, including the uncertainty that is incorporated

in the prior distribution of the error variance.

Measurement error and transient fluctuations bias some, but

not all quantitative genetic inferences. When σ2
em

> 0, the naive

estimates of h2, βz , and RBE are attenuated by the same factor

λ < 1, but other components, such as the selection differential S

or RSTS, are not affected (Table 1). The robustness of the secondary

theorem of selection to measurement error can certainly be seen

as an advantage over the Breeder’s equation. Nevertheless, the

Robertson–Price identity does not model selection explicitly, and

thus says little about the selective processes. The Robertson–Price

equation can be used to check the consistency of predictions

made from the Breeder’s equation, but the Breeder’s equation

remains necessary to test hypothesis about the causal nature of

selection (Morrissey et al. 2012; Bonnet et al. 2017). Another

quantity that is unaffected by independent transient effects, which

we however did not further elaborate on here, is evolvability,

defined as the squared coefficient of variation I = σ2
A/z2, where

z denotes the mean phenotypic value (Houle 1992). Evolvability

is often used as an alternative to heritability, and is interpreted

as the opportunity for selection (Crow 1958). Not only σ2
A, but

also z can be consistently estimated using z�, namely because the

expected values E[z�] = E[z] due to the independence and zero

mean of the error term. For completeness, we added evolvability

to Table 1.

A critical assumption of our models was that the error com-

ponents are independent of the phenotypic trait under study, but

also independent of fitness or any covariates in the animal model

or the selection model. Although the small changes in R̂STS that

we observed in the snow vole application with one-month mea-

surement sessions could be due to pure estimation stochasticity,

an alternative interpretation is that the measurement error in the

data are not independent of the animal’s fitness. At least two pro-

cesses could lead to a correlation between the measurement error

in mass and fitness in snow voles. First, pregnant females will

experience temporally increased body mass, and we expect the

positive deviation from the true body mass to be correlated with

fitness, because a pregnant animal is likely to have a higher ex-

pected number of offspring over its entire lifespan. And second,

some of the snow voles were not fully grown when measured, and

juveniles are more likely to survive if they keep growing, so that

deviations from mean mass over the measurement session period

would be nonrandomly associated with life-time fitness.

So far, we have focused on traits that can change relatively

quickly throughout the life of an individual, such as body mass,

or physiological and behavioral traits. Traits that remain constant

after a certain age facilitate the isolation of measurement error, be-

cause the residual variance term is then indistinguishable from the

error term, given that a permanent environmental (i.e., individual-

specific) effect is included in the model. In such a situation it is

sufficient to estimate σ2
R , which then automatically corresponds

to the measurement error variance, whereas σ2
PE captures all the

environmental variability. However, not many traits will fit that

description. The majority of traits, even seemingly stable traits

such as skeletal traits, are in fact variable over time (Price and

Grant 1984; Smith et al. 1986).

We have shown that dealing appropriately with measurement

error and transient fluctuations of phenotypic traits in quantitative

genetic analyses requires the inclusion of additional variance com-

ponents. Quantitative genetic analyses often differ in the variance

components that are included to account for important dependen-

cies in the data (Meffert et al. 2002; Kruuk and Hadfield 2007;

Palucci et al. 2007; Hadfield et al. 2013). Besides the importance

of separating the right variance components, it has been widely

discussed which of the components are to be included in the de-

nominator of heritability estimates, although the focus has been

mainly on the proper handling of variances that are captured by

the fixed effects (Wilson 2008; de Villemereuil et al. 2018). We

hope that our treatment of measurement error in quantitative ge-

netic analyses sparks new discussions of what should be included

in the denominator when heritability is calculated.

The methods presented in this article have been developed

and implemented for continuous phenotypic traits. Binary, cate-

gorical or count traits may also suffer from measurement error,

which is then denoted as misclassification error (Copas 1988;

Magder and Hughes 1997; Küchenhoff et al. 2006), or as mis-

counting error (e.g., Muff et al. 2018). Models for non-Gaussian

traits are usually formulated in a generalized linear model frame-

work (Nakagawa and Schielzeth 2010; de Villemereuil et al. 2016)

and require the use of a link function (e.g., the logistic or log link).

In these cases, it will often not be possible to obtain unbiased esti-

mates of quantitative genetic parameters by adding an error term

to the linear predictor as we have done here for continuous traits.

Obtaining unbiased estimates of quantitative genetic parameters

in the presence of misclassification and miscounting error will

require extended modeling strategies, such as hierarchical models

with an explicit level for the error process.

We hope that the concepts and methods provided here serve

as a useful starting point when estimating quantitative genetics pa-

rameters in the presence of measurement error or transient, irrel-

evant fluctuations in phenotypic traits. The proposed approaches

are relatively straightforward to implement, but further general-

izations are possible and will hopefully follow in the future.
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Küchenhoff, H., S. M. Mwalili, and E. Lesaffre. 2006. A general method
for dealing with misclassification in regression: the misclassification
SIMEX. Biometrics 62:85–96.

Lande, R., and S. J. Arnold. 1983. The measurement of selection on correlated
characters. Evolution 37:1210–1226.

Lush, J. L. 1937. Animal breeding plans. Iowa State College Press, Ames, IA.
Lynch, M., and B. Walsh. 1998. Genetics and analysis of quantitative traits.

Sinauer Associates, Sunderland, MA.
Macgregor, S., B. K. Cornes, N. G. Martin, and P. M. Visscher. 2006. Bias,

precision and heritability of self-reported and clinically measured height
in Australian twins. Hum. Genet. 120:571–580.

Magder, L. S., and J. P. Hughes. 1997. Logistic regression when the outcome
is measured with uncertainty. Am. J. Epidemiol. 146:195–203.

Meffert, L. M., S. K. Hicks, and J. L. Regan. 2002. Nonadditive genetic effects
in animal behavior. Am. Nat. 160(Suppl 6):S198–S213.

Meuwissen, T. H. E., B. J. Hayes, and M. E. Goddard. 2001. Prediction of
total genetic value using genome-wide dense marker maps. Genetics
157:1819–1829.

Mitchell-Olds, T., and R. G. Shaw. 1987. Regression analysis of natural
selection: statistical inference and biological interpretation. Evolution
41:1149–1161.

Møller, A., and M. D. Jennions. 2002. How much variance can be explained
by ecologists and evolutionary biologists? Oecologia 132(4):492–
500.

Morrissey, M. B., and I. B. J. Goudie. 2016. Analytical results for
directional and quadratic selection gradients for log-linear models

EVOLUTION OCTOBER 2018 2 0 0 3

https://doi.org/10.1371/journal.pbio.1002592
https://doi.org/10.1371/journal.pbio.1002592


E. PONZI ET AL.

of fitness functions. bioRxiv. https://www.biorxiv.org/content/early/
2016/02/22/040618.

Morrissey, M. B., and K. Sakrejda. 2013. Unification of regression-based
methods for the analysis of natural selection. Evolution 67:2094–2100.

Morrissey, M. B., L. E. B. Kruuk, and A. J. Wilson. 2010. The danger of
applying the Breeder’s equation in observational studies of natural pop-
ulations. J. Evol. Biol. 23:2277–2288.

Morrissey, M. B., D. J. Parker, P. Korsten, J. M. Pemberton, L. E. B. Kruuk,
and A. J. Wilson. 2012. The prediction of adaptive evolution: empirical
application of the secondary theorem of selection and comparison to the
Breeder’s equation. Evolution 66:2399–2410.

Muff, S., A. Riebler, L. Held, H. Rue, and P. Saner. 2015. Bayesian analysis
of measurement error models using integrated nested Laplace approxi-
mations. J. R. Stat. Soc. Appl. Stat. C 64:231–252.

Muff, S., M. A. Puhan, and L. Held. 2018. Bias away from the Null due to
miscounted outcomes? A case study on the TORCH trial. Stat. Methods
Med. Res.:In press.

Nakagawa, S., and H. Schielzeth. 2010. Repeatability for Gaussian and non-
Gaussian data: a practical guide for biologists. Biol. Rev. Camb. Philos.
Soc. 85:935–956.

Palucci, V., L. R. Schaeffer, F. Miglior, and V. Osborne. 2007. Non-additive
genetic effects for fertility traits in Canadian Holstein cattle. Genet. Sel.
Evol. 39:181–193.

Peek, M. S., A. J. Leffler, S. D. Flint, and R. J. Ryel. 2003. How much
variance is explained by ecologists? Additional perspectives. Oecologia
137:161–170.

Price, G. R. 1970. Selection and covariance. Nature 227:520–521.
Price, T. D., and P. T. Boag. 1987. Selection in natural populations of birds. Pp.

257–287 in F. Cooke, and P. Buckley, eds., Avian genetics. Academic
Press, Cambridge, MA.

Price, T. D., and P. R. Grant. 1984. Life history traits and natural selection
for small body size in a population of Darwin’s Finches. Evolution
38:483–494.

Richardson, S., and W. R. Gilks. 1993. Conditional independence models for
epidemiological studies with covariate measurement error. Stat. Med.
12:1703–1722.

Robertson, A. 1966. A mathematical model of the culling process in dairy
cattle. Anim. Sci. 8:95–108.

Roff, D. A. 2007. A centennial celebration for quantitative genetics. Evolution
61:1017–1032.

Rue, H., S. Martino, and N. Chopin. 2009. Approximate Bayesian infer-
ence for latent Gaussian models by using integrated nested Laplace ap-
proximations (with discussion). J. R. Stat. Soc. B (Stat. Methodol.) 71:
319–392.

Senneke, S. L., M. D. MacNeil, and L. D. Van Vleck. 2004. Effects of sire
misidentification on estimates of genetic parameters for birth and wean-
ing weights in Hereford cattle. J. Anim. Sci. 82:2307–2312.

Smith, J. N. M., P. Arcese, and D. Schulter. 1986. Song sparrows grow and
shrink with age. AUK 103:210–212.

Steinsland, I., C. T. Larsen, A. Roulin, and H. Jensen. 2014. Quantitative
genetic modeling and inference in the presence of nonignorable missing
data. Evolution 68:1735–1747.

Stephens, D. A., and P. Dellaportas. 1992. Bayesian analysis of generalised
linear models with covariate measurement error. In J. M. Bernardo, J. O.
Berger, A. P. Dawid, and A. F. M. Smith, eds. Bayesian statistics. Vol.
4. Oxford Univ. Press, Oxford, U.K.

van der Sluis, S., M. Verhage, D. Posthuma, and C. V. Dolan. 2010. Phe-
notypic complexity, measurement bias, and poor phenotypic resolution
contribute to the missing heritability problem in genetic association
studies. PLOS One 5:e13929.

Wilson, A. J. 2008. Why h2 does not always equal VA/VP? J. Evol. Biol.
21:647–650.
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