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A B S T R A C T   

Vegetation structure influences landscape use and habitat quality for many bird species. Owing to the difficulties 
associated with collecting structural data from traditional field measurements, numerous studies have investi
gated the utility of Light detection and ranging (LiDAR) for providing landscape-scale structural information that 
may be useful for exploring animal-habitat associations. Notably, almost all of these studies have involved the 
use of LiDAR from airborne rather than terrestrial platforms. However, vegetation metrics that might be 
important for explaining bird species occurrence and diversity, such as understory vegetation complexity and 
overall vegetation volume, may be partially obscured from airborne sensors by tree canopy cover. These chal
lenges might be overcome by terrestrial and UAV LiDAR sensors that can provide detailed information of un
derstory forest strata. For the first time, we collected terrestrial LiDAR (TLS) and unoccupied aerial vehicle 
LiDAR (ULS) data in a woodland landscape to compare the ability of both sensors to identify relationships among 
vegetation structural metrics and bird species richness and abundance. Overall, TLS and ULS models provided 
similar results based on the sampling methodology we used for LiDAR data collection in an open woodland 
landscape. Canopy roughness, ground vegetation vertical complexity, total vegetation volume and canopy height 
derived from these sensors were among the most common significant variables in explaining avian diversity and 
individual species abundance. Individual species abundance models provided better prediction power (up to R2 

= 0.82 (TLS) and R2 
= 0.83 (ULS)) than bird community abundance by functional guilds (up to R2 

= 0.40 (TLS), 
R2 = 0.41 (ULS)) and overall bird abundance (R2 = 0.10 (TLS), R2 = 0.16 (ULS)), species richness (R2 = 0.14 
(TLS), R2 = 0.14 (ULS)) and diversity (R2 = 0.17 (TLS), R2 = 0.16 (ULS)). Additionally, we found that several 
vulnerable bird species are strongly associated with LiDAR structural variables, which may assist with habitat 
assessment and conservation management.   

1. Introduction 

Vegetation structure is the horizontal and vertical arrangement of 
plants across the landscape (Davies and Asner, 2014; Verschuyl et al., 
2008). Vegetation structural complexity and heterogeneity have been 
shown to have a positive relationship to biodiversity because they create 
a greater variety of microclimate and microhabitats that produce more 
food and cover for a range of species (Verschuyl et al., 2008). Previously, 
a number of studies have identified strong relationships between bird 

diversity and abundance and vegetation structure across different layers 
of vegetation (Kikkawa, 1982; MacArthur and MacArthur, 1961; 
Sekercioglu, 2002; Stanley and Herman, 1974). However, traditional 
methods to measure vegetation structure can be very time consuming 
and are often limited to point sampling a subset of the landscape (David 
et al., 2010; James and Shugart, 1970; Zehm et al., 2003). 

Light Detection and Ranging (LiDAR) remote sensing technology can 
provide high-resolution topographic maps and information on vegeta
tion height, cover, volume and complexity with a high level of detail and 
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accuracy across landscapes (Bergen et al., 2009; Lefsky et al., 2002; 
Levick et al., 2019). Unlike passive sensors that depend on sunlight re
flected from objects, LiDAR uses a laser pulse emitted from the sensor. 
The reflected light is detected and digitized by the sensor creating a 
record of returns that are a function of the distance between the sensor 
and the reflected object (Anderson et al., 2016; Goetz et al., 2007; Lefsky 
et al., 2002). LiDAR sensor platforms can be terrestrial (Terrestrial Laser 
Scanner - TLS), mobile, UAV (Unoccupied Aerial Vehicle) laser scanner 
(ULS), airborne (Airborne Laser Scanner - ALS) or satellite based 
(Sumnall et al., 2016; Vierling et al., 2008). 

Vegetation structural metrics derived from LiDAR data have been 
widely used to investigate animal-habitat relationships, with a partic
ular focus on birds (Bradbury et al., 2005; Eldegard et al., 2014; Goetz 
et al., 2007; Müller et al., 2010). Goetz et al. (2007) found that LiDAR 
derived canopy height distribution variables were a stronger predictor of 
bird species richness in temperate forest ecosystems than a commonly 
used vegetation index, Normalized Difference Vegetation Index (NDVI) 
derived from Landsat imagery. Various LiDAR-derived vegetation 
height, complexity and volume metrics are significantly correlated to 
bird species presence, diversity and abundance in many different forest 
environments (Clawges et al., 2008). Forest songbird species richness by 
different functional guilds also has been predicted from LiDAR-derived 
canopy and mid-story height and mid-story density in mixed hard
wood forest (Clawges et al., 2008). A review by Davies and Asner 
(Davies and Asner, 2014) revealed that 23 avian studies found a positive 
relationship between species richness and abundance and canopy 
structural diversity and vertical distribution of vegetation. In particular, 
vegetation structural heterogeneity appeared to have a stronger rela
tionship to bird observations than canopy cover alone (Davies and 
Asner, 2014). 

Notably, most of the studies that used LiDAR to investigate re
lationships between vegetation structure and habitat quality for birds 
have used airborne LiDAR (Carrasco et al., 2019; Eldegard et al., 2014; 
Sasaki et al., 2016). While airborne LiDAR sensors provide accurate 
information on canopy structure, they have limited penetration to the 
ground and mid layer vegetation because of occlusion from the upper 
canopy (Bakx et al., 2019; Crespo-Peremarch et al., 2020; LaRue et al., 
2020). A recent review analyzed 50 papers on bird species distributions 
and species richness in relation to LiDAR-based vegetation variables and 
found that most of the studies used low density ALS data, usually 10 
points/m2, which have limited penetration below the canopy, especially 
to ground layer vegetation (Bakx et al., 2019). The authors recom
mended that future studies should focus on higher density point clouds 
that can capture more details below the canopy, as the lower strata of 
vegetation is also important for many bird species (Bakx et al., 2019). 
They also suggested that, in addition to the widely used horizontal and 
height diversity vegetation metrics, future research should also consider 
vegetation volume in different strata, which can be calculated from 
voxelized point cloud. Voxelized point cloud are three-dimensional grids 
or “voxels” that are created from one or more LiDAR points (Sasaki et al., 
2016). 

ULS may be able to overcome some of the limitations of airborne 
LiDAR sensors, since it can provide higher point density and still collects 
data relatively quickly. Fritz et al. (2018) demonstrated the potential of 
this technology for identifying important structural characteristics that 
help explain landscape use by an alpine bird community; however, the 
use of ULS for modelling bird-habitat associations has not been widely 
explored (Acebes et al., 2021). Ground-based TLS is an alternative 
platform that can provide more detailed information on vegetation 
below the canopy of forests because it measures the vegetation from the 
ground level and typically with higher resolution than airborne sensors 
(LaRue et al., 2020). Depending on the vegetation height and density, 
TLS can still be limited by occlusions though, where vegetation or other 
landscape structural features block the field of view (Crespo-Peremarch 
et al., 2020; LaRue et al., 2020). TLS data is typically only applied to 
smaller areas (< 1 ha) because collection time is slower than ULS and 

airborne LiDAR data (Liang et al., 2016). However, where logistically 
feasible, TLS may offer some advantages for measuring some understory 
vegetation structural metrics that are known to be important predictors 
of bird habitat quality and the occurrence and diversity of bird species 
(Michel et al., 2008). 

For the first time, we utilized high-density TLS and ULS LiDAR 
derived vegetation structural variables for modelling vegetation struc
tural classes and avian abundance and diversity in an Australian 
woodland. Incorporating the suggestions of earlier studies to investigate 
high-density point clouds and to incorporate vegetation volume metrics 
from voxilized point-clouds (Bakx et al., 2019; Sasaki et al., 2016), we 
used the data from both sensors to test the following hypotheses:  

(1) the high-density TLS point clouds will perform better for 
modelling overall bird abundance, species richness and diversity 
than lower density ULS point clouds; 

(2) the relationship between vegetation structural data and partic
ular bird species and groups will be modelled more accurately 
from the TLS platform for bird species and guilds that are most 
associated with ground and mid-story vegetation layers and ULS 
for those that primarily use the canopy strata. 

We anticipate that the outcomes of this study will be useful for 
conservation and management projects focused on identifying animal- 
habitat associations and establishing appropriate habitat structure for 
wildlife management. 

2. Methods 

2.1. Study area 

The study area is in Mulligan’s Flat (683 ha) and Goorooyarroo (702 
ha) nature reserves (MFGO) in the north-eastern corner of the Australian 
Capital Territory (ACT), Australia (35◦09′ S - 149◦09′ E; Fig. 1). These 
two adjacent reserves were established in 1994 and 2006 respectively to 
conserve and restore a critically endangered grassy woodland ecosystem 
(Manning et al., 2011). The dominant overstory tree species include 
Blakely’s Red Gum (Eucalyptus blakelyi), Yellow Box (E. melliodora), Red 
Stringy Bark (E. machrorhyncha), and Scribbly gum (E. rossii) with a 
relatively open midstory of primarily acacia spp. The grassy ground- 
layer vegetation is dominated by Joycea pallida, Austrodanthonia spp., 
Themeda australis and Aristida ramose (McIntyre et al., 2014; McIntyre 
et al., 2010; Shorthouse et al., 2012). Prior to becoming reserves, MFGO 
was leasehold grazing land with some areas of past cropping and pasture 
improvement (Manning et al., 2011; Shorthouse et al., 2012). The 
topography is gently undulating with a few hills and the elevation 
ranges from 650 m to 700 m. Average daily temperature in 2018 ranged 
from a minimum of 6.9 ◦C to a maximum of 22.0 ◦C, and mean annual 
rainfall was 472.0 mm (Bureau of Meteorology A., 2019). 

The reserves are the location of a long-term ecological experiment 
the “Mulligans Flat – Goorooyarroo Woodland Experiment” (Manning 
et al., 2011) As part of this experiment, restoration treatments have been 
undertaken in an attempt to restore the function and biodiversity of the 
area, and feral predators and grazers have been excluded with fencing 
around the reserves (Manning et al., 2013). To monitor ecosystem re
covery over time, animal and vegetation surveys are periodically con
ducted across 96, 1 ha permanent sites (200 m × 50 m). These sites are 
stratified across the reserves in 24 clusters that each include one of four 
different vegetation structural classes: 1) high tree cover, high shrub 
cover (HTHS), 2) high tree cover, low shrub cover (HTLS), 3) low tree 
cover, low shrub cover (LTLS), and 4) low tree cover, high shrub cover 
(LTHS) (Fig. 1). The clusters are the key stratifying unit of this experi
ment and are defined as homogenous areas of vegetation structure and 
type (Manning et al., 2011). Each site is marked in the field along the 
long axis by plastic pegs at the 0 m and 200 m points, and with star 
pickets (A and B) at the 50 m and 150 m points (Manning et al., 2011). 

S. Shokirov et al.                                                                                                                                                                                                                                



Remote Sensing of Environment 285 (2023) 113326

3

2.2. Bird data collection 

As part of long-term monitoring at MFGO, annual bird surveys have 
been conducted since 2005 at each site during two separate visits in 
October by different experienced bird observers using an acoustic and 
visual point count method (Manning et al., 2011). During the surveys, 
observers stand at the A and B star picket at the 50 m and 150 m position 
along the long axes of each site. The presence and abundance of birds in 
concentric bands (0–25 m, 25–50 m, 50–100 m and over 100 m and 
overhead) are recorded for ten minutes. Detailed information about bird 
survey methods are provided in (Manning et al., 2011). For this study, 
we used bird data collected from 2017, 2018, and 2019 because it is 
unlikely that the vegetation structure would have changed substantially 
in the period between LiDAR data acquisition in October–November 
2018 and the bird counts from those adjacent years. 

2.3. TLS data collection and post-processing 

TLS data was collected in fine weather from 1 to 31 October 2018 
with a Topcon GLS2000 (Topcon Corporation, Japan). The Topcon 
GLS2000 is a high-density laser scanner that emits near-infrared light 
(1064 nm) laser pulses at up to 120,000 laser pulses per second. The 
field-of-view of the scanner is 360◦ and 270◦ (horizontal and vertical 
direction, respectively). The beam diameter of the single pulse is 4 mm 

at 20 m. Information on a pilot study conducted to determine the 
number of TLS scans to be used for each site is provided in Appendix 1. 
We collected seven individual scans without co-registration in all 96, 1 
ha sites for a total of 672 scans with 6 mm point spacing at 10 m from the 
scanner. The position of each scan was measured with a differential GPS 
(Trimble Geoexplorer 6000 series) and post-processing was performed 
using local base station data to improve the point location accuracy to 
approximately 50 cm (Shokirov, 2021; Shokirov et al., 2020). 

Point clouds from seven individual scan stations were then co- 
registered during post-processing using Multi-station Adjustment 
(MSA) plugin in RiScan Pro software (RIEGL Laser Measurement Sys
tems GmbH). The MSA uses the iterative closest points (ICP) algorithm 
that minimizes the 3D distance between the identical points by trans
lating and rotating the entire point cloud along X, Y, Z axes until the least 
minimum distance between the identical points from two datasets is 
achieved (Šašak et al., 2019). The exact procedure we followed is 
described in detail in Shokirov (2021). Next, the point cloud from each 
site was georeferenced using DGPS locations of each scan position 
measured in the field and clipped to the spatial extent of each of the 96 
sites. Point clouds were then subsampled into 1 cm spacing to homog
enize the point distributions and duplicate points were removed using 
Cloud Compare (CloudCompare, 2020). 

Fig. 1. Map of study area in Mulligan’s Flat-Goorooyarroo Woodland Sanctuaries (right panel), which is located in the north-east corner of the Australian Capital 
Territory (ACT), Australia. The green rectangles are 1 ha sites (n = 96) that are grouped by vegetation classes (clusters), which are outlined by the multi-color 
polygons. HTHS is high tree cover, high shrub cover, HTLS is high tree cover, low shrub cover, LTHS is low tree cover, high shrub cover, and LTLS is low tree 
cover, low shrub cover. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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2.4. ULS data collection and post-processing 

We collected ULS LiDAR data across all of the 96, 1 ha sites in fine 
weather conditions from 7 to 14 November 2018. The ULS LiDAR 
platform consisted of a quadcopter integrated with RIEGL miniVUX- 
1UAV LiDAR sensor (RIEGL Laser Measurement Systems GmbH, 
Austria) and APX INS/GNSS system (Trimble, USA). The flights were 
performed at approximately 80 m above the take off point with 
approximately 25.2 km/h speed, up to 5 returns per pulse, 100 kHz pulse 
repetition rate, and up to 100,000 measurements/second (Shokirov, 
2021; Shokirov et al., 2020). Maximum scan angle of the LiDAR sensor 
was approximately ±600 with swath width about 100 m. We used DJI 
ground station pro V2 to plan the flight missions (SZ DJI TECHNOLOGY 
CO., 2018). The ULS LiDAR sensor failed to collect data on two sites, 
which were excluded from further analysis of ULS and TLS data. 

Data processing was done in RiPROCESS software suite by RIEGL 
which allowed us to bring in the trajectory data of the drone flight, align 
the flight paths, georeference the point cloud and then export it in LAS 
format. The trajectory data of the UAV LiDAR that was fed into RiP
ROCESS was generated using POSPAC UAV (Applanix) using the IMU/ 
GNSS data from the drone and RINEX data from the base station which 
was obtained from the Gungahlin location of Smartnet global network. 
The ULS LiDAR data collected over the 94 sites were clipped by corre
sponding polygons to create a separate point cloud for each site. Point 
spacing in ULS data across 94 sites ranged from 5 cm to 17 cm with an 
average of 10 cm. For this reason, we homogenized the point cloud with 
10 cm spacing and removed duplicate points using Cloud Compare 
2.10.2 (CloudCompare, 2020). 

2.5. Canopy height model 

Point clouds were cleaned from noise points and classified into 
ground and non-ground points using LAStools (Isenburg, 2012). We 
normalized point clouds by converting elevation values to height above 
ground values with LAStools (Isenburg, 2012) (Fig. 2). 

2.6. Calculating vegetation variables from the LiDAR datasets 

Canopy metrics were calculated from points above 1.3 m (Table 1). 
Based on existing vegetation layer descriptions for eucalypt grassy 

woodlands (Department of Environment G.o.A., 2013), we divided the 
point cloud into three layers representing the ground layer (L1, points ≤
1 m), the mid-story (L2, 1 m < points ≤ 10 m) and the upper story (L3, 
points > 10 m) (Fig. 3) and calculated additional vegetation metrics for 
each layer (Table 1). Vegetation volume was estimated by excluding 
ground points and constructing 0.5 m voxels (volumetric pixels) from 
point clouds, with each voxel made of one or more points. A fraction of 
woody canopy cover for each site was calculated by creating 0.25 m 
grids from points above 1.3 m and dividing the sum of the areas of all 
pixels by the size of the total area of the site (200 m × 50 m). A total of 
37 metrics were computed with lidR package (Roussel and Auty, 2017). 
List of LiDAR–derived vegetation variables and descriptions are pro
vided in Table 1. 

2.7. Statistical analysis 

2.7.1. Bird data 
We calculated bird abundance (maximum number of individual birds 

counted), species richness (cumulative total number of species), Shan
non diversity index using “vegan” R package (Oksanen et al., 2019) and 
functional diversity indices including functional richness, functional 
evenness, functional divergence, functional dispersion and Rao’s 
quadratic entropy for each site using “FD” package (Laliberté and Leg
endre, 2010) in R language (R Core Team, 2020). Shannon diversity 
index is used to characterize species diversity in a community (Morris 
et al., 2014). Functional richness is defined as the amount of niche space 
occupied by the species within a community. Functional evenness 
measures the regularity of the distribution of species abundances and 
dissimilarities in a functional space. Functional divergence is the degree 
to which abundance distribution in niche space maximizes divergence in 
functional characters within the community (Mason et al., 2005). 
Functional diversity indices quantify the trait diversity and act as a 
surrogate for the diverse ecological functions performed in the com
munity. Rao’s quadratic entropy measures the diversity of ecological 
communities and is based on the proportion of the abundance of species 
in a community and a measure of dissimilarity between the species 
(Ricotta and Szeidl, 2009). The diversity of trait values within a com
munity is therefore referred as either trait diversity or functional di
versity (FD) (Karadimou et al., 2016). Bird guilds were assigned based 
on different functional traits (i.e., grassland specialist, water bird, 

Fig. 2. Normalized TLS (a) and ULS (b) point clouds of site GO72A-3 colored by height.  
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woodland generalist, woodland specialist), nesting substrate (i.e., 
arboreal, ground, hollow, opportunistic, understory), foraging substrate 
(i.e., air, aquatic, arboreal, ground, opportunistic), and dispersion (low, 
partial, high) (Le Roux et al., 2018; Ikin et al., 2012). 

2.7.2. Model selection process 
A key stratifying unit of the sites established in our study area were 

the clusters, which were comprised of one of four vegetation types 
(HTHS, HTLS, LTLS, LTHS) (Manning et al., 2011). Although it was not 
the primary goal of the study, we first explored the ability of ULS and 
TLS data to correctly classify sites according to these vegetation cate
gories. The outcomes from this classification exercise were used to select 
a modelling approach for relating the LiDAR structural data to the ani
mal data. We used a multinomial regression model by means of “mul
tinom” function in “nnet” R package (Venables and Ripley, 2003) for this 
analysis. We tested two models, one based on the first four principle 
components from the PCA calculated from all TLS and ULS LiDAR var
iables (Appendix 2) and a model based on selected TLS and ULS LiDAR 
variables (3.6.3) to classify vegetation types. We also tested the per
formance of the four PCA components model and the selected variable 
model to predict overall bird abundance, species richness and diversity. 
However, we used the model type that most accurately classified the 
sites into their appropriate vegetation class for the full analysis of the 
bird data. 

2.7.3. Variable selection process 
For the selected variable model, we chose variables that were not 

highly correlated (0.7 maximum threshold), and this is in keeping with 
other studies (Dormann et al., 2013; Sasaki et al., 2016). Pearson cor
relation matrices of TLS and ULS variables are provided in Appendix 3 
and Appendix 4, respectively. When selecting between two highly 
correlated variables, we attempted to select for the most ecologically 
meaningful variable (e.g. average height (meanH) and 75th percentile 
height (p_75) resulted in us selecting average height). We also selected at 
least one variable from each strata of vegetation and several canopy 
metrics to cover all layers of vegetation in the landscape. The variable 
selection was conducted for each sensor, respectively. However, we gave 
preference to variables that were the same across sensors when the 
above criteria had been met. Although it was not our intention, our final 
variables consisted of the same 12 for each sensor. This was probably 
due to a combination of our selection method and the fact that the 
variables from the two sensors were highly correlated (Fig. 4), despite 
these sensors having different viewing geometry and point densities. All 
explanatory variables were standardized so that they have a mean of 
zero (“centering”) and standard deviation of one (“scaling”) (Becker 
et al., 1988). Additionally, a cross correlation matrix was calculated to 
examine the relationship between TLS and ULS variables. 

2.7.4. Modelling bird diversity and abundance by guilds and individual 
species 

To evaluate which selected LiDAR based variables had the strongest 
relationship to bird abundance, species richness, species diversity, and 
functional diversity of birds across sites, we fitted linear mixed effects 
models. Correlations between individual bird abundance and bird 
abundance within functional guilds and vegetation structural metrics 
were evaluated using Poisson distribution generalized linear mixed ef
fects models (GLMM) with glmer function in lme4 R package (Bates 
et al., 2015). Mixed models extend the basic linear model such that they 
recognize grouped or nested structures in data by random effects (Melin 
et al., 2018). In these models, predictor variables were the selected 
vegetation structural metrics (fixed effects) and twenty-four polygons 
(random effects), with each polygon containing four transects repre
senting one of the four vegetation classes (see Fig. 1). Response variables 
were overall bird metrics, guilds and individual species abundance. 

2.7.5. Examination of model fit 
We used Residual Diagnostics for HierARchical Models (DHARMa) 

package (Hartig, 2017) for examining the model fit, dispersion and zero- 
inflation. Marginal and conditional R2 were calculated to evaluate the 
proportion of variance explained by fixed and mixed effects for models 
by species and guilds (Nakagawa et al., 2013). 

To avoid model convergence issue, we retained the species or guilds 
that had at least 10% count data across the sites. If the model 

Table 1 
Description of calculated vegetation structural variables from LiDAR dataset.  

Name of variable Description 

maxH Maximum height of canopy (points > 1.3 m). 
meanH Mean height of canopy (points > 1.3 m). 
stdH Standard deviation of canopy height (points > 1.3 

m), which describes the variation in the canopy 
height. 

skewH Skewness of canopy height (points > 1.3 m). 
Negative skewness means that the distribution is 
dominated by higher points (upper canopy is 
dominant) but a few extreme lower points. 
Positive skewness means that the distribution 
dominated by lower points (lower canopy is 
dominant) but a few extreme higher points. 

kurH Kurtosis of canopy height (points > 1.3 m). 
Negative kurtosis means the distribution of points 
centered around the mean (mid-canopy is 
dominant). Positive kurtosis means the point 
distribution is heavy on tails and less around the 
mean (lower and upper canopy is dominant). 

p_05, p_10, p_25, p_50, p_75, 
p_90, p_95, p_99 

Canopy height percentiles (points > 1.3 m). 
Canopy height percentiles are the height below 
which a specified percentage of total point clouds 
were located. For example, p_05 = 2 m means that 
5% of vegetation points are found below 2 m. 

vci_2m, vci_5m, vci_10m, 
vci_15m, vci_20m 

Vertical complexity indexes (VCI) at 2 m, 5 m, 10 
m, 15 m, 20 m height bins, (points > 1.3 m).  

VCI = (
∑

i=1
HB [(pi ln (pi))])/ ln (HB) 

Where VCI in a vertical complexity index, HB is 
the total number of height bins, and pi is the 
proportional abundance of LiDAR returns in 
height bin i. 
A VCI value close to one indicates that most height 
bins have an equal amount of vegetation. VCI 
value decreases if the distribution of canopy in the 
height bin becomes more uneven (van Ewijk et al., 
2011). 

Cov Fraction of canopy cover, (points > 1.3 m). 
height_cv Coefficient of variation of height, (points > 1.3 

m). Indicates the canopy height variation. 
canopy_roughness Canopy roughness describes complexity/ 

variability of canopy height (Herrero-Huerta 
et al., 2020) (points > 1.3 m). Higher variability in 
the canopy height provides higher roughness 
index and vice versa. 

canopy_shannon Normalized Shannon diversity index of canopy ( 
Pretzsch, 2009), (points > 1.3 m). Indicates 
canopy height diversity. 

Tvolume Total vegetation volume (m3) – number of 0.5 m3 

voxels divided by 8 (ground points excluded). 
vlayer_L1 Vegetation volume (m3) in 1st layer (points 0-1 m¸ 

ground points excluded). 
vlayer_L2 Vegetation volume (m3) in 2st layer (points 1 

m–10 m). 
vlayer_L3 Vegetation volume (m3) in 3st layer (points 10 m 

and above). 
meanH_L1, meanH_L2, 

meanH_L3 
Mean height of 1st, 2nd, 3rd layer. 

sdH_L1, sdH_L2, sdH_L3 Standard deviation of vegetation height in 1st, 
2nd, 3rd layer. 

roughness_L1, roughness_L2, 
roughness_L3 

Roughness indexes of 1st, 2nd, 3rd layer (Jenness, 
2004). Horizontal distribution of vegetation 
across different layers. 

vci_L1, vci_L2, vci_L3 Vertical complexity indexes of 1st, 2nd, 3rd layer ( 
van Ewijk et al., 2011). Vertical distribution of 
vegetation across different layers.  
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convergence issue persisted, we were able to resolve this by decreasing 
the number of fixed effects by removing those with the lowest explan
atory values. We considered a predictor to be significant if the absolute 
value of its z-score was >1.96, corresponding to a p-value smaller than 
0.05. 

3. Results 

3.1. Bird data 

A total of 12,117 bird observations (n = 5540 in Mulligan’s Flat and 
n = 6577 in Goorooyarroo) from 84 bird species were observed from the 
double surveys each year across the three-year period from 2017 to 
2019. A maximum of 238 birds and 36 species and a minimum of 42 
birds and 10 species were counted in any one site (Table 2). Most of the 

Fig. 3. Vegetation layers: L1 - ground layer (points ≤ 1 m), L2 - mid-story layer (1 m < points ≤ 10 m), L3 - upper story layer (points > 10 m).  

Fig. 4. Correlation matrix of Terrestrial Laser Scanner (TLS) and Unoccupied Aerial Vehicle Laser Scanner (ULS) variables.  
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surveyed birds belong to the woodland specialist habitat class (WS.HC, 
n = 8725), nested in hollows (Hol.Nest, n = 4668), foraged in the trees 
(Arb.Forage, n = 6649) and displayed low dispersal (Low.Disp, n =
8187) (Table 3). 

3.2. Predicting vegetation classes from the LiDAR dataset 

Multinomial regression models showed that selected LiDAR variables 
provided better accuracy in predicting vegetation classes than the first 
four PCA variables for both TLS and ULS data (Appendix 5. Table A5.1 
and Table A5.2). Therefore, we decided to use selected variables over 
PCA variables as predictors in our models. For both TLS and ULS data
sets, models were better at classifying HTHS and LTLS vegetation classes 
than HTLS and LTHS vegetation classes. 

3.3. Selected variables 

Our variable selection method resulted in 12 out of 37 LiDAR metrics 
being selected for the models. The Pearson correlation matrix showed 
that most of the TLS and ULS variables are strongly correlated to each 
other (r > 0.7) (Fig. 4). Only the L1 metrics and lower strata canopy 
metrics showed a weak correlation (r < 0.3) to each other. Basic sta
tistics for these TLS and ULS variables are provided in Fig. 5. 

3.4. Overall bird abundance, species richness and diversity 

The GLMM for the overall bird abundance did not show a significant 
relationship with any of the 12 selected variables from the ULS or TLS 
data (Supplementary 1, “Abundance”, Fig. 6). Bird species richness (SR) 
was positively related to several TLS-derived variables including meanH, 
and skewH and height_cv and negatively correlated to meanH_L3. How
ever, tvolume was the only significant predictor among the ULS selected 
variables for predicting bird species richness (SR). Bird diversity 
(Bird_shannon) was positively influenced by TLS and ULS meanH and 
tvolume, and negatively influenced by meanH_L3 (Supplementary 1, 
“Bird_shannon, Fig. 6). Among the functional diversity indexes, func
tional evenness (FEve) was negatively correlated to only TLS-based 
vci_15m. However, vci_15m derived from TLS and ULS data was nega
tively related to functional divergence. Functional dispersion (FDis) and 
Rao’s quadratic entropy (RaoQ) were negatively influenced by TLS and 
UAV – derived vci_2m and vci_15m, and positively related to ULS – based 

vci_L1 (Supplementary 1, Fig. 6). However, all these models showed 
relatively poor performance with explained variance between 10.0% 
and 20.0% (Supplementary 1). 

3.5. Bird abundance within functional guilds 

All of the 16 functional guilds (Table 3) were significantly correlated 
to one or more LiDAR variables, and some guilds showed a stronger 
response to vegetation structure than others (Supplementary 2, Fig. 7). 
Models from TLS data explained between 8.5% and 39.9% (average of 
22.6%) variability, and ULS models explained between 6.8% and 40.8% 
(average of 23.5%) variability in abundance of birds across functional 
guilds. 

The most robust TLS-based explanatory models were the water bird 
habitat class (R2 = 0.40) and aquatic foragers abundance (R2 = 0.40), 
which were positively correlated to meanH, skewH and vci_5m, and 
negatively correlated to maxH and meanH_L3. The ground nesting guild 
model from TLS data explained substantial variance (R2 = 0.34), and 
was negatively influenced by maxH and positively influenced by skewH, 
tvolume and vci_L2. The TLS-based opportunistic foraging model was the 
third best at explaining variance in the data (R2 = 0.31). That model was 
negatively correlated to maxH, meanH, skewH and height_cv and strongly 
positively correlated to canopy_roughness and meanH_L3 (Supplementary 
2, Fig. 7). 

The ULS-based models also performed best for aquatic foraging and 
water bird habitat guilds (R2 = 0.41), which were positively related to 
vci_5m, vci_15m and vci_L1. The next best performing ULS guild model 
was for woodland generalist abundance (R2 = 0.37) and was positively 
associated with maxH and vci_L1. The ULS model also explained sub
stantial variance in abundance of ground nesting birds (R2 = 0.35), 
which were positively influenced by meanH and skewH, but negatively 
related to maxH (Supplementary 2, Fig. 7). 

Canopy roughness (canopy_roughness) was the best predictor variable 
for the TLS- based models with a significant correlation to 10 functional 
guilds followed by skewH, maxH and meanH height of canopy and 
meanH_L3 (Fig. 7). The best predictor variables for ULS-based models 
were vci_5m, which was significantly correlated to 9 guilds, maxH, 
canopy_roughness and vci_L1 (Fig. 7). 

3.5.1. Individual bird species abundance 
Abundance of forty-nine out of fifty-one bird species responded to 

Table 2 
Basic statistics from bird data across sites. The table column headings are: Abundance = bird abundance, SR = species richness, Bird_shannon = shannon diversity, 
FRic = functional richness, FEve = functional evenness, FDiv = functional diversity, FDis = functional dispersion, and RaoQ = Rao’s quadratic entropy.  

Statistics Abundance SR Bird_shannon FRic FEve FDiv FDis RaoQ 

Maximum 238.00 36.00 3.22 0.09 0.82 0.96 0.29 0.09 
Mean 126.22 21.97 2.63 0.01 0.67 0.87 0.24 0.07 
Stdev 42.60 5.91 0.35 0.02 0.07 0.04 0.02 0.01 
Median 121.50 22.00 2.69 0.01 0.67 0.87 0.24 0.07 
Minimum 42.00 10.00 1.68 0.00 0.50 0.78 0.17 0.04  

Table 3 
Basic statistics about bird abundance within functional traits across sites. Habitat classes (GS.HC = grassland specialist habitat class, WB.HC = water bird habitat class, 
WG.HC = woodland generalist habitat class, WS.HC = woodland specialist habitat class), nesting substrate (Arb.Nest = arboreal nesting, Hol.Nest = hollow nesting, 
Usty.Nest = understory nesting, Opp.Nest = opportunistic nesting), foraging substrate (Air.Forage = airial foraging, Aqu.Forage = aquatic foraging, Arb.Forage =
arboreal foraging, Grnd.Forage = ground foraging, Opp.Forage = opportunistic foraging), dispersion (Low.Disp – low dispersion, Partial.Disp – partial dispersion) 
groups.  

Stats. GS. 
HC 

WB. 
HC 

WG. 
HC 

WS. 
HC 

Arb. 
Nest 

Grnd. 
Nest 

Hol. 
Nest 

Opp 
Nest 

Usty. 
Nest 

Air. 
Forage 

Aqu. 
Forage 

Arb. 
Forage 

Grnd. 
Forage 

Opp. 
Forage 

Low. 
Disp 

Partial. 
Disp 

Sum 238 83 2868 8725 6174 44 4668 749 279 165 83 6649 2879 2138 8187 3722 
Max 17 14 106 200 148 11 159 31 24 28 14 141 98 71 210 118 
Mean 2.53 0.88 30.51 92.82 65.68 0.47 49.66 7.97 2.97 1.76 0.88 70.73 30.63 22.75 87.10 39.60 
Stdev 3.14 2.35 20.33 34.72 28.19 1.59 32.00 7.93 4.81 4.08 2.35 27.53 18.98 13.64 34.44 23.14 
Median 1.50 0.00 26.50 86.00 62.50 0.00 40.00 6.00 1.00 0.00 0.00 65.00 25.00 19.50 84.50 37.50 
Min 0 0 2 28 11 0 5 0 0 0 0 19 5 1 29 3  
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TLS and ULS – derived vegetation structural variables (Supplimentary 
3). Only Grey Shrike Thrush and Pallid Cuckoo abundance showed no 
relationship to any TLS or ULS LiDAR structural variables. For the TLS- 
based models, canopy_roughness was significantly related to the abun
dance of 16 bird species, followed by tvolume, which was related to the 
abundance of 15 bird species (Fig. 8). In the ULS models, vci_L1 related 
to bird species abundance more than any other variable (22 bird spe
cies), followed by canopy_roughness (17 bird species) (Fig. 8). Explained 
variance of TLS models ranged from 4.2% to 81.7% (average of 31.1%). 
Similarly, ULS-models explained 4.9% to 83.4% (average of 30.5%) of 
variation in bird species abundance. 

The model for Nankeen Kestrel abundance was the best performing 
TLS model (R2 = 0.82), and was strongly correlated to vci_15m, can
opy_roughness, meanH_L3 and vci_L2 and negatively related to meanH and 
tvolume (Supplementary 3, Fig. 8). The second best TLS model was 
Spotted Pardalote abundance (R2 = 0.77), which was correlated to 
maxH, meanH, skewH and tvolume. White Throated Treecreeper abun
dance was also strongly related to TLS LiDAR-derived vegetation 

structure (R2 = 0.74) and had a positive relationship to skewH, vci_15m, 
tvolume and vci_L2, and a negative relationship with maxH and vci_5m 
(Supplementary 3, Fig. 8). 

The best performing ULS model was for Varied Sittela abundance 
(R2 = 0.83), which was explained by maxH, meanH, skewH and 
meanH_L3. The White Throated Treecreeper abundance model (R2 =

0.78) showed significant correlation with meanH, skewH, canopy_r
oughness, meanH_L3 and vci_L1. Likewise, the Sacred Kingfisher abun
dance model explained 76.2% variance and was related to maxH, 
meanH, skewH, meanH_L3, vci_L1 and height_cv (Supplementary 3, Fig. 8). 

Overall, TLS and ULS data produced very similar results in predicting 
individual bird species abundance, and this was demonstrated by the 
linear relationship between the explained variances of TLS and ULS 
models (Fig. 9). 

4. Discussion 

This is the first study that uses both ULS and TLS data for 

Fig. 5. Boxplots represent the distribution of selected terrestrial laser scanner (TLS) and unoccupied aerial vehicle laser scanner (ULS) variables. Upper, mid, and 
lower horizontal lines of the box indicate 1th, median, and 3rd quartiles. Whiskers extend to the highest and lowest extreme of observations, and the dots on the 
whiskers are outliers. 

Fig. 6. Plots illustrate the significance of predictor variables (by z value) for predicting overall bird abundance, species richness and diversity. Bars represent 
predictor variables. The horizontal orange line shows the significance threshold (z = 1.96, or p < 0.05) of predictors. The abbreviations are: FDis = Functional 
dispersion, FDiv = functional divergence, FEve = functional evenness, RaoQ = Rao’s quadratic entropy, SR = species richness, TLS = terrestrial laser scanner, and 
ULS is unoccupied aerial vehicle laser scanner. 
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investigating relationships between a wide range of bird population data 
and vegetation structure in a woodland landscape. It is also the first 
study in Australia to model avian abundance and species richness using 
LiDAR data. Overall (combined species) bird abundance was not 
significantly related to any TLS or ULS LiDAR-derived variables, and this 
may be due to the number of different bird species that occupied a wide 
variety of structural niches in the landscape (Lesak et al., 2011). Models 
for predicting bird species richness, diversity and abundance within 
functional guilds performed better than overall bird abundance. 

Some individual bird species abundance models were able to explain 
a very large amount of variability in abundance of particular species, 
which is promising for using this data for habitat assessments and 
improving our understanding of habitat requirements for threatened 
species in particular. Canopy roughness, vertical complexity of the first 
layer, total vegetation volume and canopy height were the variables that 
were most strongly associated with bird community and individual 
species abundance. Our assumption that higher density LiDAR point 
clouds from the TLS platform would create better models than the lower 
density, airborne ULS data was not supported by our data. This was 
likely influenced by low-lying occlusions in the data that were more 
substantial for the TLS than the ULS owing to the positioning of the 
sensors and the characteristics of the woodland landscape (Olschofsky 
et al., 2016). As a result, the ULS generally provided better results for 
predicting the abundance of individual bird species and guilds that 
forage on the ground than the TLS based on our methodology. We 
discuss the overall finding in more detail below and provide recom
mendations for future research. 

4.1. Overall bird abundance, species richness and diversity 

The lack of significant relationships between TLS and ULS structural 

metrics and overall bird abundance may be due to contrasting habitat 
requirement across the large suite of different species included in the 
total abundance tally (Wiens and Rotenberry, 1981). Models for pre
dicting overall bird species richness did find significant relationships to 
some variables but these were dependent on the data source (TLS or 
ULS). Species richness was positively related to TLS canopy height di
versity and upper canopy height. The only ULS predictor that was 
significantly related to bird species richness was the total volume of 
vegetation. The TLS sensor may be able to capture more meaningful 
structural variation below the canopy for birds than the ULS data owing 
to the positioning of the sensor under the canopy. Overall species di
versity models from TLS and ULS data provided similar results with 
canopy height and total volume being strongly related to the bird di
versity indices, but height_cv was only significant in TLS-based metrics 
(Supplementary 1). This further supports the idea that the TLS sensor 
was able to capture canopy height variation in a more meaningful way 
for bird habitat quality, probably owing to the positioning of the sensor 
(Ashcroft et al., 2014; Blakey et al., 2017). Nonetheless, the higher 
density TLS data did not perform better than the ULS data in terms of 
overall ability to explain variance in this data. Therefore, our first hy
pothesis that high density TLS LiDAR point clouds will perform better for 
modelling overall bird abundance, species richness and diversity than 
lower density ULS point clouds was not supported with the number of 
TLS scans per site that we collected. 

Generally, our results from species richness and diversity models 
agree with relationships identified in previous studies (Clawges et al., 
2008; Lesak et al., 2011; Sasaki et al., 2016). Clawges et al. (2008) found 
a significant correlation between ALS LiDAR-derived canopy height di
versity and bird species diversity. Similarly, ALS LiDAR – derived can
opy height and mid-story density and height has been associated with 
song bird species richness (Lesak et al., 2011). Notably, these studies 

Fig. 7. Plots illustrate the significance of predictor variables (by z value) from terrestrial laser scanner (TLS) and unoccupied aerial vehicle laser scanner (ULS) for 
predicting bird abundance by functional guilds. Bars represent predictor variables. Horizontal orange line shows the significance threshold (z = 1.96, or p < 0.05) of 
predictors. The abbreviations are: habitat classes (GS.HC = grassland specialist, WB.HC = water bird, WG.HC = woodland generalist, and WS.HC = woodland 
specialist), dispersal (Low.Disp = low, and Partial.Disp = partial), nesting substrate (Arb.Nest = arboreal, Hol.Nest = hollow, Usty.Nest = understory, and Opp.Nest 
= opportunistic), foraging substrate (Air.Forage = air, Aqu.Forage = aquatic, Arb.Forage = arboreal, Grnd.Forage = ground, and Opp.Forage = opportunistic). 
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Fig. 8. Plot illustrates the significance of predictor variables (by z value) from terrestrial laser scanner (TLS) and unoccupied aerial vehicle laser scanner (ULS) for 
predicting individual bird species abundance. Bars represent predictor variables. Horizontal orange line shows the significance threshold (z = 1.96, or p < 0.05) 
of predictors. 
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reported relatively low overall explained variance (R2 ≤ 0.2), which is 
also in keeping with our findings. The typically low explained variance 
for community level data (e.g., bird species richness and diversity) in 
these models may be due to a mismatch in scale, since some of the bird 
species frequently use landscape areas beyond the site level that have 
different overall structural characteristics. Bird occurrence and habitat 
relationships can be scale-dependent (Seavy et al., 2009; Weisberg et al., 
2014). Weisberg et al. (2014) investigated multiscale habitat heteroge
neity and bird occurrence using LiDAR data, and they found the stron
gest associations at a 200 m (4 ha) scale and the weakest associations at 
a 50 m (0.25 ha) scale. A similar study on multiscale analysis using 
LiDAR derived canopy height measurements (Seavy et al., 2009) found 
that specific bird species responded differently to vegetation structure at 
different spatial scales. Future studies should revisit this dataset at a 
variety of scales. 

4.2. Modelling bird abundance within functional guilds 

All of the functional guilds that we analyzed were significantly 
related to LiDAR derived vegetation structural metrics. Generally, TLS 
and ULS data achieved similar results in predicting functional guild 
abundance (average R2 = 0.23). A few earlier studies have also used 
remote sensing to investigate relationships between bird functional 
guilds and vegetation structure, but they used species richness within 
guilds, rather than species abundance within guilds (Lee et al., 2017; 
Lesak et al., 2011). For example, ALS-derived vegetation measures have 
been used for estimating songbird species richness by nesting, foraging 
and edge preferring guilds (Lesak et al., 2011). In that study, models 
using structural metrics from ALS data explained between 7.0% and 
16.1% of the variance in species richness in nesting guilds, whereas our 
study explained between 8.5% and 33.7% (TLS) and 6.8% and 35.5% 
(ULS) variance in the abundance of birds from various nesting guilds. 
Another study also found significant relationships between canopy 
height and density variables and foraging guilds (Lesak et al., 2011). Our 
models showed that bird abundance by functional guilds is often influ
enced by canopy height variables, canopy roughness and vertical 
complexity of vegetation in the ground layer. Notably, the ULS models 

found strong correlations between ground foraging guilds and ground- 
layer vegetation structure, but the TLS models did not show this rela
tionship. This indicates that the ULS may capture more structural het
erogeneity due to less occlusion in the ground-layer in an open 
woodland than the TLS. As a result, a portion of our second hypothesis 
that overall, TLS data from the seven scan stations per site will perform 
better than ULS data in predicting avian functional guild abundance for 
ground foraging or low nesting species is rejected. 

4.3. Modelling individual bird species abundance 

The relationship between specific vegetation structural metrics and 
the abundance of certain bird species may be useful for future man
agement and conservation efforts, particularly for vulnerable species. In 
many cases, the link between the structural metrics and specific bird 
species can be easily explained by their habitat preference, lending more 
weight to this relationship. For example, we found that the abundance of 
the vulnerable Superb Parrot (Polytelis swainsonii, Nature Conservation 
Act 2014, 2021) is positively influenced by TLS-derived maximum 
height of trees and ULS-derived maximum height of trees and the 
complexity of the first layer vegetation and negatively influenced by 
horizontal distribution of canopy (canopy roughness). Separate studies 
have found that Superb Parrots use large trees for nesting and breeding 
and ground vegetation for foraging (Manning et al., 2004a). In addition 
to the Superb Parrot, our LiDAR-derived structural models also per
formed very well in predicting the abundance of two other threatened 
species, the White-winged Triller (Lalage tricolor, Nature Conservation 
Act 2014, 2021), and the Varied Sittella (Daphoenositta chrysoptera, 
Nature Conservation Act 2014, 2021). 

Some woodland sensitive birds also responded to the LiDAR derived 
vegetation structural metrics. For example, the Brown Thornbill 
(Acanthiza pusilla) is a species found in sparse eucalypt woodlands 
(Stagoll et al., 2010) and its abundance was negatively correlated to 
canopy roughness and mean height of canopy (Supplementary 3, Fig. 8). 
Prior studies found that Noisy Miners (Manorina melanocephala) are less 
likely to occur in areas with high shrub cover (Crates et al., 2018; 
Montague-Drake et al., 2011; Val et al., 2018), and our noisy miner 

Fig. 9. The relationship between explained variance (R2) calculated from TLS and ULS based Poisson distribution mixed model for predicting individual bird 
species abundance. 
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model also found a significant negative relationship to shrub layer 
vegetation (Supplementary 3). This finding suggests that managing 
landscapes to increase shrub cover should reduce the negative impact of 
this aggressive species, which is native, but often overabundant in 
human modified landscapes (Debus, 2008). 

On the other end of the extreme, we found no relationship between 
our site-level structural variables and the abundance of the Grey Shrike- 
thrush (Colluricincla harmonica) or Pallid Cuckoo (Cacomantis pallidus). 
These common species are widely distributed across Australia and use 
habitat at large spatial scales and across a wide range of landscape types 
(BirdLife, 2020). If relationships between these species and specific 
structural variables are to be found, then it is more likely to be at larger 
spatial scales than our 1 ha site-level metrics. Overall though, the indi
vidual bird species models from both TLS and ULS performed better than 
the community-based models, and that’s notable because habitat is a 
species specific concept (Betts et al., 2014; Manning et al., 2004b). In 
trying to understand the structural requirements of wildlife using LiDAR 
data, it may be best to focus on individual species rather than overall 
abundance or diversity (Manning et al., 2004b). Contrasting re
quirements from multiple species may frustrate attempts to model re
lationships to structural vegetation data (Halstead et al., 2019). 

Out of 51 bird species, ULS ground-layer vegetation structure was 
important for 22 species, compared to 13 species for the TLS models 
(Supplementary 3, Fig. 8). The abundance of ground foraging birds such 
as Yellow-rumped Thornbill (Acanthiza chrysorrhoa), Yellow-faced 
Honeyeater (Lichenostomus chrysops), Sulphur-crested Cockatoo (Caca
tua galerita), Superb Parrot (Polytelis swainsonii), Red-rumped Parrot 
(Psephotus haematonotus), Little Corella (Cacatua sanguinea) were 
significantly influenced by ground layer vegetation complexity for ULS 
but not TLS data (Supplementary 3, Fig. 8). This might be related to the 
occlusion of TLS laser pulses by ground vegetation (LaRue et al., 2020) 
and the ability of ULS to capture ground vegetation structure in an open 
woodland due to the open canopy architecture of this landscape (Yebra 
et al., 2015). As expected though, we did find that some species that 
depend on canopy strata such as Buff-rumped Thornbill (Acanthiza reg
uloides), Eastern Rosella (Platycercus eximius), Red-rumped Parrot (Pse
photus haematonotus) and Red Wattlebird (Anthochaera carunculata) 
were significantly associated with more ULS canopy variables than TLS. 
For these reasons, our second hypothesis is partially supported because 
the relationship between vegetation structural data and particular bird 
species was modelled more accurately from the ULS data for species that 
primarily use the canopy strata. 

4.4. TLS and ULS datasets 

Although we compared the performance of TLS and ULS data in 
modelling bird-habitat associations, it is important to recognize that we 
collected 7 scans of TLS data in each 1 ha site, and this is a relatively low 
number of scans compared to recent studies that acquired >16 scans in 
1 ha sites (Levick et al., 2021; Wilkes et al., 2017). However, most of 
those studies collected data over only a few hectares in total, which 
makes more scans per ha and associated post-processing feasible. 
Increasing the number of TLS scans across our 96, 1 ha sites would in
crease the time required for data collection, making it less comparable in 
effort to the ULS data. However, more TLS scans would decrease inci
dent angle (i.e., the angle between the incoming laser pulse and surface), 
which would capture dense vegetation and ground more completely, 
substantially reducing occlusions (Soudarissanane et al., 2009). 

Topcon GLS2000 is a single return LiDAR sensor, and a multiple 
return TLS sensor would have been able to penetrated farther into 
vegetation (Wilkes et al., 2017). The ability of the ULS sensor to record 
multiple returns, as well as its smaller incident angle, provided advan
tages over the TLS. Higher point density TLS LiDAR data in itself does 

not offer an advantage over lower point density ULS data if the coverage 
is less complete and the landscape type allows a ULS sensor to view 
lower strata vegetation to successfully model structural associations 
between plants and animals. 

4.5. Conclusions 

Mixed models showed strong relationships between vegetation 
structural metrics derived from TLS and ULS sensors and the abundance 
of many individual bird species and their functional guilds. This type of 
data can be useful for identifying habitat requirements for a variety of 
bird species (Graf et al., 2009). The performance of ULS models and the 
speed at which ULS data can be collected relative to TLS sensors is 
particularly promising for this application. Understanding the 
landscape-scale that species use and matching this to the scale of LiDAR 
structural metrics may improve our ability to identify relationships be
tween remotely sensed vegetation structure and wildlife (Seavy et al., 
2009). 
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Appendix 1. Appendix 

We conducted a pilot study in March 2018 to determine the best method to characterize the 96 × 1 ha (50 m × 200 m) experimental sites with TLS 
data to achieve the most complete coverage within a timeframe that would allow us to scan all of the sites within a month. We collected TLS data at 1.7 
m scanner height with 6 mm point spacing at 10 m distance from the scanner. Data were collected from 5, 6 and 7 scanning stations in a test site 
(Fig. A1). These stations were established in a zigzag formation with approximately equal spacing between the stations to cover the 200 m × 50 m site. 
Data collection was performed with and without co-registering the scanning stations to determine whether co-registration during collection was more 
efficient than later co-registration during post-processing. Co-registration allows a surveyor to tie multiple scans in the same site together using targets 
directly in the field. However, this method requires more time to place and scan targets and could reduce the number of scan points within a site in a 
given timeframe (Liang et al., 2016, Blakey et al., 2017). We found that data could be co-registered effectively during post-processing, and that 
allowed us to maximize the number of scans collected in the field.

Fig. A1. Test scan positions: a) 5 scans, b) 6 scans and c) 7 scans for 200 m by 50 m size sites.  

Appendix 2. Contribution of TLS (left) and ULS (right) LiDAR variables for the first and the second PCA axis 
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Appendix 3. Pearson correlation matrix of TLS variables
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Appendix 4. Pearson correlation matrix of ULS variables

Appendix 5. Appendix  

Table A5.1 
Confusion matrix for vegetation classes predicted using terrestrial laser scanner (TLS) LiDAR variables. Vegetation classes are high tree high shrub (HTHS), high tree 
low shrub (HTLS), low tree high shrub (LTHS), and low tree low shrub (LTLS).  

Vegetation classes were predicted from the first four PCA variables calculated 
from all TLS LiDAR variables 

User’s accuracy (%) Vegetation classes were predicted from 12 
selected TLS LiDAR variables 

User’s accuracy (%)  

HTHS HTLS LTHS LTLS HTHS HTLS LTHS LTLS 

HTHS 21 5 6 4 58.3 26 5 6 3 65.0 
HTLS 3 3 1 0 42.9 2 6 0 0 75.0 
LTHS 6 5 9 0 45.0 1 3 9 3 56.3 
LTLS 0 3 4 24 77.4 1 2 5 22 73.3 
Producer’s accuracy (%) 70.0 18.8 45.0 85.7  86.7 37.5 45.0 78.6  
Classification accuracy (%) 60.6 67.0   

Table A5.2 
Confusion matrix of vegetation classes predicted using UAV laser scanner (ULS) LiDAR variables. Vegetation classes are high tree high shrub (HTHS), high tree low 
shrub (HTLS), low tree high shrub (LTHS), and low tree low shrub (LTLS).  

Vegetation classes were predicted from the first four PCA variables calculated 
from ULS LiDAR variables 

User’s accuracy (%) Vegetation classes were predicted from 12 
selected ULS LiDAR variables 

User’s accuracy (%)  

HTHS HTLS LTHS LTLS  HTHS HTLS LTHS LTLS  

HTHS 24 4 13 3 54.5 25 3 4 1 75.8 

(continued on next page) 
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Table A5.2 (continued ) 

Vegetation classes were predicted from the first four PCA variables calculated 
from ULS LiDAR variables 

User’s accuracy (%) Vegetation classes were predicted from 12 
selected ULS LiDAR variables 

User’s accuracy (%)  

HTHS HTLS LTHS LTLS  HTHS HTLS LTHS LTLS  

HTLS 3 5 1 2 45.5 3 8 2 1 57.1 
LTHS 3 3 1 0 14.3 1 4 11 3 57.9 
LTLS 0 4 5 23 71.9 1 1 3 23 82.1 
Producer’s accuracy (%) 80.0 31.3 5.0 82.1  83.3 50.0 55.0 82.1  
Classification accuracy (%) 56.4 71.3  

Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.rse.2022.113326. 
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