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Abstract
Phenotypic trait data play a central role in ecology and evolutionary research. The quality of trait data, and the findings of 
subsequent analyses, depend on the quality of measurement. However, most studies overlook measurement accuracy in their 
study designs. We investigated the repeatability of five frequently used linear measurements of avian traits: wing length, tarsus 
length, bill length, bill depth and bill width and the validity of proxies for three traits: bill surface area, structural body size 
and tarsus size, using species from the infra-order Meliphagides (honeyeaters, fairy wrens and their allies). Repeatability 
varied between traits and across species for a given trait: traits larger than 13 mm showed high repeatability compared with 
smaller traits. By incorporating microCT technology, we showed that the formula for the surface area of a cone, a widely 
used proxy of bill surface area, accurately describes bill surface area within species. Surface measurement of tarsus and 
wing lengths were valid proxies for underlying osteology. We recommend preliminary estimation of repeatability should be 
undertaken for individual traits prior to data collection, in order to design suitable protocols that improve data quality, while 
optimizing costs involved, particularly for traits < 13 mm.

Keywords  Measurement repeatability · Measurement validity · Bill surface area · Wing morphology · Tarsus length · 
Meliphagides

Introduction

Variation in the size of phenotypic traits is often estimated 
in ecological and evolutionary studies. For example, mor-
phometric measures of traits have been widely used to 
establish phylogenetic relationships among taxa (Thiele 
1993; Wiens 2004) and are increasingly applied to studies Supplementary Information  The online version contains 
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of adaptation to climate (McLean et al. 2014; Gardner 
et al. 2019). These studies are in turn used to inform nature 
conservation decisions, including prioritisation of invest-
ment in threatened species (phylogenetic conservation pri-
oritisation, Mooers et al. 2008; Billionnet 2018), selection 
of provenancing strategies for climate-resilient ecosystem 
restoration (Prober et al. 2015), and other climate adap-
tation management applications (Mawdsley et al. 2009). 
Accurate estimation of phenotypic traits underpins the 
effectiveness of these investigations and applications. The 
accuracy of estimations partly depends on measurement 
quality, described by measurement accuracy and precision. 
Measurement accuracy is how close a measured value is 
to its true value, whereas precision is the closeness of 
agreement between repeated measures, affected by ran-
dom errors (Hick and Emmerson 2014). Despite its impor-
tance, few studies explicitly consider measurement quality 
in their study designs (Gosler 1987; Martin and Pitocchelli 
1991; Benítez-Díaz 1993; Harris and Smith 2009; Perktaş 
and Gosler 2010; Anderson et al. 2019).

Repeatability of Measurements

Ideally, repeated measures of a trait from a single indi-
vidual should be identical, if the measurer used the same 
method and instrument for the measurement (Harper 1994). 
However, the value will vary between measures due to ran-
dom errors, errors associated with both the measurer (e.g. 
variability in locating landmarks that define the trait) and 
instrument imprecisions. If the variation caused by meas-
urement error represents a significant portion of the varia-
tion between individuals, then the measurements will not 
represent the true biological variation. Such measurements 
are not reliable and are of limited use in studies. The portion 
of variation that is attributed to true biological variation 
can be quantified using repeatability, a widely used index 
of measurement quality, also known as the intra-class cor-
relation coefficient (ICC) (Nakagawa and Schielzeth 2010).

Some researchers have incorporated precautionary steps 
in their study designs to reduce potential measurement 
errors, which will ultimately improve measurement quality. 
These include using the same measuring instrument (e.g. 
digital callipers, rulers) (Benítez-Díaz 1993) and employing 
the same observer for data collection (Barrett et al. 1989). 
Despite these attempts, the errors associated with observer 
measurement inconsistencies such as variability in locating 
landmarks that define variables, remain (Harris and Smith 
2009; Goodenough et al. 2010; Perktaş and Gosler 2010). 
This may be particularly problematic in cases where trait 
size, for example bill surface area, is estimated from multiple 
independent traits whereby the errors associated with each 
trait can accumulate, affecting the final estimate.

Some trait measurements are inherently less precise than 
others. A previous study of Short-tailed Shearwaters found 
higher measurement error for smaller characters including 
tarsus width (36%) and unguis width (32%) (Totterman 
2016). Measurement error is also higher when measuring 
characters without clearly defined landmarks (e.g. 15% for 
total culmen and 20% for bill base width in Short-tailed 
Shearwaters) (Goodenough et al. 2010; Totterman 2016). 
In small mammals, right hind foot measurement shows a 
relatively high measurement error (Blackwell et al. 2006; 
Stephens et al. 2015). However, it is not clear whether the 
precision of these trait measurements is lower, in general, 
across species or if there is a size threshold below which the 
error associated with measurement increases sharply.

Measurement Validity

Validity is the degree to which a measurement represents 
what it is supposed to measure (Hick and Emmerson 
2014). In some cases, phenotypic traits are difficult or 
impossible to measure directly from live individuals in 
the field. In these instances, it is a common practice to use 
an easily measurable character as an index or proxy for a 
particular trait. These proxies are valid only if they can 
satisfy the underlying assumptions.

Studies investigating the thermal properties of avian 
bills, their conformity with Allen’s rule (the tendency for 
appendages to be larger in warmer climates) and adaptive 
potential to climate change increasingly use linear meas-
urements (i.e. bill length, depth and width) to estimate 
bill surface area from the formula for the lateral surface 
area of a nearly circular elliptical cone (Greenberg et al. 
2012; Luther and Greenberg 2014; Campbell-Tennant 
et al. 2015). However, bird bills are adapted for different 
foraging strategies and are highly diverse morphologically 
(Sulloway and Kleindorfer 2013; Temeles et al. 2009) so 
the formula for surface area based on a circular elliptical 
cone may not be reliable across species. To our knowledge, 
the applicability of the circular elliptical cone formula as 
a proxy for bill surface area has never been tested on any 
group of birds, though it has been used extensively.

Tarsus length, another common measurement, has 
been widely used to assess geographic variation in bird 
appendages and conformity with Allen’s rule (Nudds and 
Oswald 2007; Symonds and Tattersall 2010). It has also 
been recommended as a proxy for structural body size 
by some authors (Senar and Pascual 1997; Freeman and 
Jackson 1990). Tarsus length is a measurement taken 
from the integument cover of tarsometatarsus, usually 
from the intertarsal joint, to the lower edge of the last 
undivided scale at the toe divergence (Salewski et  al. 
2014). There may be differences in integumentary cover 
of the tarsometatarsus (i.e. the layer of scales) in regard 



Evolutionary Biology	

1 3

to positioning, degree of overlap, fusion or sizes of scales, 
among species (Stettenheim 2015). Hence, tarsus length 
measurements may not be a valid proxy for tarsus size in 
all species.

In ornithological research, wing length is used as a 
proxy for structural body size i.e. size of the skeletal 
frame which supports the soft tissues of an organism (e.g. 
Aldrich and James 1991; Gardner et al. 2014a). Wing 
length is commonly measured from the carpal joint to 
the tip of the longest primary feather, and thus reflects 
variation in the length of underlying wing bones (carpo-
metacarpus and phalanges) as well as the length of the 
primary feathers. Flight feathers are continuously abraded 
and worn between successive moults (which occurs annu-
ally in most passerines: Kiat and Sapir 2017) causing 
changes in the feather length (Leverton 1989; Rising and 
Somers 1989; Flinks and Salewski 2012). In this con-
text, it is important to assess if manual linear measures 
of wing length accurately represent structural size based 
on underlying osteology, and the proportion of measure-
ment variation that comes from feather wear and abrasion.

We investigated the repeatability of commonly used 
linear body measurements of birds and the validity of lin-
ear measurements as proxies for trait size using museum 
specimens from the infraorder Meliphagides (honeyeat-
ers, fairy wrens, thornbills and their allies). This group, 
which comprises the largest radiation of Australian pas-
serines, is widely distributed across Australia inhabit-
ing different climatic regions, and hence has been used 
to study trends in trait sizes across environmental and 
temporal gradients (Gardner et al. 2014a, b, 2016, 2019; 

Friedman et al. 2017). Here we (1) compare the repeat-
ability of five common linear body measurements i.e. bill 
length, bill width, bill depth, wing length, tarsus length 
and (2) assess how repeatability changes with mean trait 
size across species. We assess the validity of linear meas-
urements as estimators of trait size; (3) we measure bill 
surface area digitally and compare with surface area esti-
mated using a mathematical equation based on manual 
linear measurements as well as the manual measurement 
of bill length; and (4) assess how bill curvature affects 
these associations. Finally, (5) we explore how well tarsus 
length and wing length measurements represent the size 
of underling bones.

Methodology

Study Species

Using museum specimens of Meliphagides radiation (Aves: 
Passeriformes), we examined the bills and tarsi of 31 species 
and the wings of 78 species for repeatability assessment. 
Additionally, ten species were chosen to represent a diversity 
of bill shapes and body sizes to assess measurement validity 
(Supplementary material Table S1, Fig. 1). Specimens were 
housed in the major museum collections in Australia. Meta-
data relevant to each specimen (the month of capture, year of 
capture and sex) were obtained from pre-existing database, 
to incorporate in models. We excluded damaged specimens 
and those preserved after 2015 to avoid specimen shrinkage 
issues (Totterman 2016).

Fig. 1   Bill shape of a Striated Pardalote (Pardalotus striatus); b 
Weebill (Smicrornis brevirostris); c Variegated Fairy-wren (Malu-
rus lamberti); d Large-billed Gerygone (Gerygone magnirostris); e 
Black-headed Honeyeater (Melithreptus affinis); f Grey-fronted Hon-
eyeater (Ptilotula plumula); New Holland Honeyeater (Phylidonyris 

novaehollandiae); h Yellow-throated Miner (Manorina flavigula); 
i Little Wattlebird (Anthochaera chrysoptera); j Eastern Spinebill 
(Acanthorhyncus tenuirostris). (“Illustrations by Peter Marsack, 
reproduced from Menkhorst et al. (2017), The Australian Bird Guide, 
with permission from CSIRO Publishing”)
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Data Collection

Measurements for Repeatability Assessment

We took two measurements each for bill length, bill 
depth, bill width and tarsus length of 2062 specimens and 
wing length of 6709 specimens (Supplementary material 
Table S1). Bill length was measured from the feathering at 
the base of the upper mandible to the bill tip; bill width from 
the posterior edge of the nares on one side of the bill to the 
same on the other side; and bill depth from the upper man-
dible to the lower mandible at the posterior edge of the nares 
at right angles to the tomia (Baldwin et al. 1931; Gardner 
et al. 2016). Tarsus length was measured from the back of 
the intertarsal joint to the lower edge of the last undivided 
scale before the toes diverge (Baldwin et al. 1931; Salewski 
et al. 2014). Measurements for bill length, depth and width 
and tarsus length were taken with a pair of digital callipers 
(Mitutoyo) to an accuracy of 0.01 mm. For wing length, we 
measured the total length from the carpal joint to the tip of 
the longest primary of the flattened right wing chord using 
a butt-ended ruler to the nearest 0.5 mm.

Bill and tarsus measurements for each specimen were 
collected using the following protocol: one measurement 
of bill length followed by bill depth, bill width and tarsus 
length was taken, then a second set of measurements were 
taken in the same order. The same pair of digital callipers 
was used for all measurements, and the jaws of the calliper 
were closed between successive measurements. The repeat 
measurements of wing length were obtained in two succes-
sive handlings widely separated in time, the first in 2012 and 
the second in 2018. Three measurers were involved in data 
collection; bill and tarsus measurements of all species were 
taken by the same investigator, wing length measurements 
were collected by two investigators, but each species was 
measured by the same investigator.

Measurements for Validity Assessment

We gathered Three-Dimensional (3D) data of 100 speci-
mens from ten species using X-ray micro-computed tomog-
raphy (microCT). All specimens were CT scanned using the 
Quantum FX Micro CT scanner in the Imaging and Cytom-
etry Facility, John Curtin School of Medical Research, Aus-
tralian National University. Specimens for this work were 
obtained from the Australian National Wildlife Collection, 
Canberra. We excluded specimens mounted on metal rods 
because of the beam-hardening artefacts (e.g. streak arte-
facts) caused by imaging materials with vastly different 
X-ray opacity values (i.e. metal and bone). The microCT 
scanner settings used to scan each structure (bill, wing 
and tarsus) are given in Supplementary material Table S2. 
The source voltage and source current maintained was the 

same across all scans, with values of 90 kV and 200 μA 
respectively.

The resulting projections were reconstructed into a vir-
tual stack of 2D cross section image slices using Quantum 
FX software interface. The reconstructed image stacks in 
DICOM format were converted into processed volume 
(*.pvl.nc format) using the Drishti importer utility in Drishti 
v2.6.4 (Limaye 2012). These processed volumes contained 
information on the voxel type and voxel size (equivalent of 
a 3D pixel), and were later used, rendered as 3D volumes to 
collect digital bill measurements and length measurements 
of underlying bones in the wing and tarsus.

We collated the bill data (bill length, bill width, and bill 
depth), wing length and tarsus length data manually for all 
specimens, following the method described at the begin-
ning of this section. The surface area of bills was manually 
estimated using the following equation (Eq. 1) for the lateral 
surface area of a nearly circular elliptical cone (Greenberg 
et al. 2012; Luther and Greenberg 2014);

where BL is the bill length, BW is the bill width and BD is 
the depth.

Digital Bill Measurements

This involved two key steps: (1) creating a bill polygon from 
the processed volumes; (2) obtaining bill measurements 
from the polygon. We used Drishti renderer of Drishti v2.64 
(Limaye 2012) to create the polygon and MeshLab v2016.12 
(www.meshl​ab.net) to estimate surface area. In order to cre-
ate the bill polygon, we first defined a clipping plane using 
three landmarks on the bird skull, instead of the bill surface, 
that were relatively stable and easy to find (Fig. 2a, b). We 
applied transfer functions for the clipped volume across dif-
ferent density thresholds, in order to have a full view of the 
bill (including the soft structures like the keratinous lay-
ers around the bill) without interference from feathers or 
from background on the bill surface. The tool ‘Mop carve’ 
in Drishti was used to remove regions of the volume that 
obscured the target region, as it was not possible to dif-
ferentiate all constituent tissue types by only thresholding 
density values through transfer functions. Colour gradients 
in the transfer functions were adjusted to differentiate the 
keratinous layer around the nares from rest of the structure. 
The keratinous structure around the nares was worn to vary-
ing degrees, with differences among individuals. Therefore, 
this region was excluded from the surface area estimation as 
explained later. The bill polygon from the clipped volume, 
was generated using the ‘Mesh generator’ plugin in Drishti 
and exported as a 3D surface mesh in Polygon File Format 
(PLY). Default settings were used when generating meshes 

(1)Bill surface area =

(

BW + BD

4

)

× BL × π

http://www.meshlab.net
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from the plugin, for all individuals. The default value for 
colour type ‘VR Lut Color’, was used, as it incorporates the 
colour gradient and opacities selected by the user to the bill 
polygon.

The PLY meshes were then imported to MeshLab 
(Cignoni et al. 2008) for surface area estimation. Here, 
we first coloured the surface of the polygon, excluding the 
region around the nares which is the dense white region 
of the bill polygon shown in Fig. 2c. Then the area of the 
coloured region was estimated as the digital surface area. 
Because our analysis showed that repeatability was high 
(ICC > 0.99) based on a subset of data (n = 46 individuals), 
we took only one measurement per specimen thereafter.

We collated two length measurements from the clipped 
bill volume i.e. straight bill length and curved bill length 
(taking the bill curvature into account) of the upper 

mandible to estimate an index of bill curvature (Fig. 2c). 
Here, the residuals of the simple linear model between 
straight length and curved length [using the function lm() 
in R] were used as the index of bill curvature.

Digital Measurements of Underlying Bones

We measured the total length of carpometacarpus and 
phalanges (Wcp) and the length of carpometacarpus (Wc) 
digitally from wing volume files and the length of tarso-
metatarsus from the processed volumes of tarsus as shown 
in Fig. 3, using Drishti renderer (Limaye 2012). We dis-
carded all measurements from the CT scan data for indi-
viduals that were damaged internally (e.g. broken bones).

Statistical Analyses

Measurement Repeatability

Repeatability is calculated as: Eq. 2.

where �2

�
 is among-individual variance and �2

�
 is within-indi-

vidual variance (Nakagawa and Schielzeth 2010). The values 
of repeatability range between 0 and 1, and are equal to one 
if measurements are without error. We calculated the repeat-
ability for all trait measurements of all species using a linear 
mixed-effects model-based approach (Nakagawa and Schi-
elzeth 2010). We used MCMCglmm in R (Hadfield 2010) to 
estimate among-individual variance (�2

�
) and within-individ-

ual variance or the residual variance (�2

�
) of Eq. 2.

We performed separate models for each trait, by fitting 
sex, latitude, longitude, year of capture, season of collec-
tion (in bill trait models), feather wear (in wing length 
model) and order of handling as fixed effects (see explana-
tion below), individual identity as a random effect with trait 
measurement as the dependent variable. Individual identity 
estimates variance between repeated measurements of indi-
viduals (�2

�
) . In addition to variation between two meas-

urements of the same individual, the variation between 
individuals (�2

�
) can also directly affect repeatability. High 

repeatability values are expected from more heterogeneous 
groups than from homogenous groups. Therefore, factors 
such as sex, location (latitude, longitude), or year of capture 
which could increase the heterogeneity within the group (i.e. 
species) should be included as covariates to control for their 
effect and prevent false inferences on repeatability of trait 
measurements (Martin and Pitocchelli 1991; Wiklund 1996). 
Likewise, we included season of collection to control for 
seasonal differences in bill size due to foraging behaviours 

(2)ICC =
�
2

�

�
2

�
+ �

2

�

Fig. 2   Landmarks used to create the clipping plane on a the upper 
mandible and b lower mandible, c bill polygon created using Drishti 
software, also showing the two length measurements obtained; 
straight bill length (Bst) from dashed line and curved bill length (Bcv) 
from solid line
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and an index of feather wear, estimated as described in Gard-
ner et al. 2014b to control for difference in wing length due 
to feather wear and abrasion (Matthysen 1989; Martin and 
Pitocchelli 1991; Gosler 1987). Finally, we included order 
of handling as a covariate, as we were interested to see if 
measurements taken during the first handling were consist-
ently different to those taken during the second handling.

We carried out non-parametric Kruskal–Wallis tests fol-
lowed by post-hoc Dunn tests with Bonferroni adjustment 
using the dunn.test package in R (Dinno 2017), to test for 
differences in repeatability between traits. For this analy-
sis, we only used species for which we examined all traits 
(n = 23).

We used phylogenetic generalized linear mixed models 
using MCMCglmm in R (Hadfield 2010) to assess the linear 
associations between (1) repeatability, (2) among-individual 
variance and (3) within-individual variance with mean trait 
size, across all species (n = 78). Response and predictor vari-
ables were log transformed before model fitting to ensure 
normality. The phylogeny for this analysis was constructed, 
using data downloaded from the Global Phylogeny of Birds 
website (www.birdt​ree.org) (Jetz et al. 2012). We down-
loaded 1000 trees with the Hackett backbone (Hackett et al. 
2008) and calculated a 50% majority-rule consensus phylog-
eny using the consensus() function of the ape packages in R 
(Paradis et al. 2004). We then added the phylogenetic com-
ponent to the models using the function inverseA() from the 
MCMCglmm package (Hadfield and Nakagawa 2010). We 
included trait as a second random term along with species 
in all three models. We ran the model for 401,000 iterations 
using weakly informative priors, with a thinning interval 

of 400 and burn-in phase of 1000. We used default broad 
Gaussian priors for fixed effects and inverse-Wishart priors, 
with parameters V = 1 and nu = 0.002, for random effects. 
We visually examined the plots of parameter estimates to 
ensure model convergence.

Validity of Measurements

We first investigated the repeatability of digital measurement 
of bill surface area using MCMCglmm, as described in the 
previous section. We applied standardized major axis regres-
sion (SMA), also known as reduced major axis regression 
using the R package smatr (v. 3.4–8) (Warton et al. 2018) for 
comparisons relating to manual and digital measurements 
i.e. manual surface areas vs digital surface area and manual 
bill lengths vs digital surface area across each species. The 
slope test in smatr package was used to test whether the 
slopes of regression lines significantly deviated from 1. 
We used phylogenetic controlled generalized linear mixed 
model using MCMCglmm in R, adding bill curvature as an 
interaction term with the manual measurement (bill surface 
area or bill length), to test if associations are affected by bill 
curvature across species. All response and predictor vari-
ables were standardized before carrying out the analysis. We 
included species as a random term to account for differences 
in sample sizes between species.

We used the same mixed model approach, for compari-
sons between measurements of wing length and tarsus length 
with underlying bones. Here, we performed separate mod-
els for each bone length i.e. (1) total length of carpometa-
carpus and phalanges, (2) length of carpometacarpus, (3) 

Fig. 3   a Total length of 
carpometacarpus and phalan-
ges (Wcp); b length of carpo-
metacarpus (Wc); c length of 
tarsometatarsus (TL)

http://www.birdtree.org
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tarsometatarsus by fitting bone length as the response vari-
able and surface measurement as the predictor. We included 
feather wear as an interaction term in wing length models, to 
account for effect of feather wear on wing length-bone asso-
ciations. Feather wear may reduce the strength of association 
between wing length and wing bone.

Results

Repeatability Between Traits

The repeatability coefficients were different among the five 
traits (Kruskal–Wallis test: chi-squared = 69.155, df = 4, 
P ≤ 0.001; Fig. 4) and among species for a given trait (Fig. 4; 
Supplementary material Tables S3, S4, S5, S6, S7). The 
ICCs of all trait measurements are given in Supplementary 
material Table S3, S4, S5, S6, S7.

Wing measurements showed the highest mean ICC 
(0.987) of all five traits considered in this study; the val-
ues were > 0.9 for all species (Supplementary material 
Table S3). Mean ICC of tarsus measurements across spe-
cies was also high, 0.955, with all species, except Acan-
thiza ewingii (ICC = 0.897) and Anthochaera paradoxa 
(ICC = 0.894) showing repeatability of > 0.9 (Supplementary 

material Table S4). Unlike wing and tarsus measurements, 
the repeatability of the three bill measurements were highly 
variable within the range of species considered (Fig. 4). 
Bill length showed high repeatability and was the highest 
(ICC = 0.919) of the three bill traits (Fig. 4; Supplementary 
material Table S5). The bill depth and width, the smallest 
traits, showed the lowest mean ICCs (Supplementary mate-
rial Tables S6, S7) and were significantly different from 
wing and tarsus measurements (Fig. 4).

Repeatability Versus Mean Trait Size

The repeatability of measurements that were less than 
approximately 13 mm was highly variable, compared with 
measurements above 13 mm (Fig. 5a). Measurements above 
13 mm were less variable and showed high repeatability 
with > 0.9. We found significant positive linear associa-
tions between repeatability, among-individual variance and 
within-individual variance with mean trait size (Table 1). 
The increase of within-individual variance was less pro-
nounced, than the increase in among-individual variance 
(Fig. 5b). High repeatability, > 0.9, across larger traits (i.e. 
traits > 13 mm) are explained by higher among-individual 
variance, rather than within-individual variance.

Validity of Trait Measurements

All ten species showed a significant association between 
digital measurement and manual estimates of bill surface 
area. This association was strong in seven of the ten species 
i.e. Acanthorhynchus tenuirostris, Anthochaera chrysoptera, 
Gerygone magnirostris, Manorina flavigula, Melithreptus 
affinis, Phylidonyris novaehollandiae, Ptilotula plumulus 
(R2 > 0.7, P < 0.05; Table 2). However, in two species, the 
slopes of the regression lines were significantly different 
from one.

Only two of ten species showed strong associations 
between manual measurements of bill length and digital 
surface area (R2 > 0.7; Table 2). Slopes of one of the two 
species were significantly higher than 1 and over-represented 
bill surface area variation (Table 2). Species that showed 
a weak correlation (R2 < 0.4) between manual and digital 
measurements of bill length (i.e. Malurus lamberti and 
Pardalotus striatus) displayed weak to moderate associations 
with both proxies (Table 2). There was no significant effect 
of bill curvature on associations between digital surface area 
and both proxies across species (Table 3). Curved bill length 
of all species was strongly associated with straight length in 
digital measurements (Table 4). Mean values of all digital 
and manual trait measurements of bills with standard errors 
are given in Supplementary material Table S8.

Almost all species showed a strong significant positive 
linear relationship between tarsus length measurements and 

Fig. 4   Repeatability estimates (posterior mean) for five traits across 
23 species; a wing length, b tarsus length; c bill length; d bill depth 
and e bill width, showing differences between traits. Shaded area 
shows the variation in the distribution of measurement repeatability 
for the trait (n = 23). Compact letter displays (a, ab, bc, and c) indi-
cate significant differences between traits (P < 0.05; Dunn post-hoc 
test)



	 Evolutionary Biology

1 3

tarsus bone length measured digitally, across species with 
a slope close to 1 (Table 5). Wing length was also strongly 
associated with underlying wing bone lengths across the 
ten species (Table 5). However, the slope of wing bones on 
wing length was different from 1. We found no evidence 
for a significant effect of feather wear on wing length- bone 
association (Table 5).

Discussion

Of the five phenotypic traits included in this study, the 
measurements of larger traits, i.e. wing and tarsus length, 
showed consistently high repeatability (> 0.9) across spe-
cies, while the repeatability of smaller traits (bill length, 
depth, width) varied greatly among species. Repeatability, 

Fig. 5   Change in a measure-
ment repeatability (ICC), b 
among-individual variance �2

�
 

and within-individual variance 
�
2

�
 of traits across 78 species, 

with mean trait size. The scale 
of the x axis of a is log10 trans-
formed. Dashed vertical line of 
a demarcates the traits above 
and below 13 mm and the dot-
ted horizontal line demarcates 
the ICC above and below 0.9

Table 1   Phylogenetic 
generalized linear mixed 
model, testing associations 
between mean trait size and 
repeatability, among-individual 
variance, within-individual 
variance across five different 
traits of 78 species from the 
infraorder Meliphagides

Shown are the posterior mean estimate, associated 95% credibility intervals and R2 showing the variance 
explained by mean trait size. Parameter estimates that were significant (P < 0.05) are highlighted in bold

Response Parameter Parameter 
estimate (β)

95% credibility interval R2

Log repeatability Log mean trait size 0.022 0.001–0.057 0.222
Intercept  − 0.014  − 0.122 to − 0.027

Log among-individual variance Log mean trait size 1.692 1.479–1.908 0.950
Intercept  − 2.289  − 2.571 to − 1.998

Log within-individual variance Log mean trait size 0.863 0.578–1.1933 0.702
Intercept  − 2.652  − 3.109 to − 2.236
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among- and within-individual variances were depend-
ent on trait size. However, among-individual variance 
increased at a higher rate than within-individual variance, 
resulting in high repeatability coefficients for larger traits. 
Smaller traits were subject to relatively high within-indi-
vidual variance that is associated with measurement pre-
cision, compared to among-individual variance of those 
traits. The surface area of bills estimated from manual 

measurements (length, depth and width) was strongly cor-
related with the digital estimates, although less so in the 
two species that had the smallest bill lengths. However, 
bill length alone was a relatively poor correlate of digital 
bill surface area. Wing and tarsus lengths were strongly 
associated with the lengths of underlying bones, indicat-
ing that they may be useful as indices of structural body 
size.

Table 2   The results of standardized major axis (SMA) regressions between manual estimates of bill surface area and bill lengths (predictor vari-
able), with digital measurement of bill surface area (response variable)

All variables were log transformed. SA: surface area estimated using mathematical formula. BL: bill length from bill tip to the feather base. 
Final column of the table shows the association between manual measurement of bill length (BL) and digital measurement of straight bill length 
(Bst). Associations that are significant (P < 0.05) are highlighted in bold
a Slopes significantly different from 1 at 0.05 level of significance

Species n Intercept Slope Lower CI Upper CI Adjusted R2 Adjusted R2 for 
association with 
BLst

Acanthorhyncus tenuirostris SA 10 0.046 0.981 0.781 1.232 0.920

BL 10 0.172 1.415a 1.190 1.683 0.954 0.960
Anthochaera chrysoptera SA 10 0.728 0.662a 0.456 0.961 0.781

BL 10 0.788 1.110 0.688 1.793 0.627 0.558
Gerygone magnirostris SA 9 0.208 0.887 0.581 1.352 0.763

BL 9 0.669 1.057 0.640 1.747 0.657 0.744
Malurus lamberti SA 8 0.375 0.828 0.454 1.510 0.592

BL 8 0.372 1.342 0.576 3.125 0.096 0.102
Manorina flavigula SA 10  − 0.152 1.025 0.701 1.499 0.772

BL 10  − 0.030 1.715a 1.097 2.681 0.680 0.748
Melithreptus affinis SA 8 0.312 0.799 0.552 1.156 0.857

BL 8 0.326 1.408 0.904 2.193 0.790 0.582
Pardalotus striatus SA 10  − 0.658 1.428 0.839 2.429 0.533

BL 10 0.760 1.099 0.523 2.311 0.005 0.449
Phylidonyris novaehollandiae SA 10  − 0.014 1.018 0.748 1.386 0.852

BL 10 0.155 1.564 0.892 2.744 0.472 0.715
Ptilotula plumulus SA 9 0.533 0.695a 0.581 0.832 0.959

BL 9 0.701 1.052 0.655 1.692 0.696 0.625
Smicrornis brevirostris SA 9 0.136 0.931 0.579 1.497 0.696

BL 9 0.648 1.084 0.580 2.025 0.444 0.646
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Repeatability of Measurements

Our findings of significantly high repeatability coefficients 
for measurements of larger traits across 24 species (i.e. wing 
length and tarsus), compared with smaller traits (i.e. bill 

length, width and depth), is in line with findings of previous 
studies that only use measurements of a single species to 
compare coefficients between traits (Lougheed et al. (1991) 
on American Coots, Fulica American and Totterman (2016) 
on Short-tailed Shearwaters, Puffinus tenuirostris). We dem-
onstrate that the repeatability coefficients (estimated using 
a mixed model approach) vary not only between traits, but 
also between closely related species for a given trait which, 
to our knowledge, has not been previously tested using mul-
tiple species. Such differences, could have been partially 
caused by differences in the clarity of land-marks due to 
structural differences between species, affecting precision 
of the measurement. Further, differences in trait size may 
also have contributed to variation in repeatability between 
species for a particular trait. This suggests the importance 
of quantifying repeatability of a trait for each species under 
study (especially for small traits), even when the same meas-
urer is employed to collect measurements from all individ-
uals. The repeatability coefficients are highly variable for 
traits below 13 mm, whereas for traits above 13 mm they 
are close to 1.0. Therefore, caution is required when working 
with traits below 13 mm regardless of trait type or species. 
Muñoz-Muñoz and Perpiñán (2010) reported a decrease in 

Table 3   The results of 
phylogenetic generalized 
linear mixed models showing 
the effect of bill curvature on 
surface area predictions using 
two proxies: mathematical 
formula based estimations (SA) 
and bill length (BL) across ten 
species of Meliphagides

Shown are the posterior mean estimate, associated 95% credibility intervals and P values. Significant val-
ues (P > 0.05) are highlighted in bold

Proxy Parameter Parameter estimate 95% credibility interval P value

Formula based 
estimations

Intercept  − 0.044  − 0.601 to 0.436 0.854
Surface area (manual) 0.871 0.775–0.964  < 0.001
Curvature 0.057 0.013–0.101 0.020
Surface area × curvature 0.022  − 0.011 to 0.058 0.192

Bill length Intercept  − 0.074  − 0.714 to 0.543 0.824
Bill length (manual) 0.869 0.753–0.992  < 0.001
Curvature 0.084 0.031–0.135 0.002
Bill length × curvature 0.048  − 0.002 to 0.094 0.066

Table 4   The results of standardized major axis (SMA) regression 
between straight length (BLst) and curved lengths (BLcv) of bill poly-
gons for ten species of Meliphagides

Significant associations are highlighted in bold (P < 0.05)

Species n Lower CI Upper CI R2

Acanthorhyncus tenuirostris 10 0.946 1.012 0.998
Anthochaera chrysoptera 10 0.869 1.028 0.989
Gerygone magnirostris 9 0.907 1.107 0.988
Malurus lamberti 8 0.826 1.673 0.870
Manorina flavigula 10 0.937 1.200 0.977
Melithreptus affinis 8 0.928 1.113 0.992
Pardalotus striatus 10 0.475 1.081 0.731
Phylidonyris novaehollandiae 10 0.980 1.041 0.999
Ptilotula plumulus 9 0.946 1.160 0.987
Smicrornis brevirostris 9 0.802 1.184 0.952

Table 5   Phylogenetic 
generalized linear mixed 
model, testing associations 
between manual measurement 
of wing length, tarsus length 
with underlying bones i.e. total 
length of carpometacarpus 
and phalanges (Wcp), length 
of carpometacarpus (Wc), 
tarsometatarsus (TL) across 
ten species from the infraorder 
Meliphagides

Shown are the posterior mean estimate, associated 95% credibility intervals and P-values. Significant val-
ues (P > 0.05) are highlighted in bold

Response Parameter Parameter estimate 95% credibility interval Marginal R2

TL Tarsus length 0.966 0.893–1.037 0.948
Intercept 2.141 0.733–3.809

Wcp Wing length 0.169 0.141–0.198 0.793
Feather wear 0.076  − 0.075 to 0.225
Wing length × feather wear 0.000048  − 0.0017 to 0.0018
Intercept 3.210 0.195–6.666

Wc Wing length 0.098 0.080–0.116 0.870
Feather wear 0.025  − 0.072 to 0.119
Wing length × feather wear 0.0002  − 0.0009 to 0.001
Intercept 1.133  − 0.471 to 2.852
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percentage measurement error (1-repetability) with increas-
ing trait size, across 157 skeletal characters from a wide 
range of taxa. In their study, measurement error declined 
when characters reached a mean size of 10 mm.

Our results clearly indicate that the consistently high 
measurement repeatability for traits > 13 mm was not due 
to higher precision in measurement, but resulted from rel-
atively higher among- individual variance. Both within- 
and among-individual variances showed a strong signifi-
cant increase with mean trait size across 78 species of 
Meliphagides, but at a higher rate in the later, resulting in 
high repeatability coefficients for larger traits. Our findings 
are supported by Muñoz-Muñoz and Perpiñán (2010), who 
also showed that the decline in percentage measurement 
error associated with increasing trait size was the result 
of rapid increase in among-individual variation using 
skeletal characters. Hallgrímsson and Maiorana (1999) 
suggest three explanations for the positive relationship 
between mean trait size and among individual variation 
of body size (body mass) in species of mammals and birds; 
explanations were based on niche width, metabolic scal-
ing and the scaling of body mass components. Although 
the latter two explanations are exclusive to the variability 
of body mass, niche width can inform variability—trait 
size relationships. Previous authors reported an increase 
in intra-specific trait variability with an increase in niche 
width (Van Valen 1965; Rothstein 1973). For example, 
Van Valen (1965) reported a two times higher variabilities 
for bill length and width for birds in more variable niches, 
suggesting that high trait variability is an adaptation for 
utilizing diverse niche space. While trait variability is 
linked to niche width, the size of the species may also be 
associated with niche width. For example, Hallgrimsson 
and Maiorana (1999) demonstrate an indirect association 
between trait variability and size. Smaller species should 
be more specialized with narrower niche widths, based on 
the right skewed frequency distribution of body size for 
birds (Blackburn and Gaston 1994; O’gorman and Hone 
2012), perhaps caused by a reduction in inter-specific com-
petition for niche space with increasing size. Narrower 
niche widths may underlie lower variability in trait size 
among small species. High trait variability among large 
species, on the other hand, may be caused by broader niche 
width elicited by stable population size (Hallgrimsson and 
Maiorana 1999).

The variability introduced through measurement error 
can have two types of consequences, depending on whether 
the variable measured with error is a response variable or 
a predictor. First, if the variable measured with error is 
the response variable of a model, increased measurement 
error tends to increase the variability in parameter esti-
mates as well as measures of uncertainty (standard error, 
span of confidence interval, P values). Despite increased 

rates of false positive and false negative results, measure-
ment error in the response produces no bias, assuming 
measurement error is symmetrical (Hyslop and Imbens 
2001). On the other hand, if the variable measured with 
error is a predictor, increased measurement error tends to 
shrink parameter estimates toward zero, thus introducing 
bias (Fuller 1987; Hyslop and Imbens 2001; Carriquiry 
2015). Measures of uncertainty tend to decrease too, but 
at a slower rate than the decrease in the absolute value 
of the parameter point estimate, meaning that the rate of 
false negative results tends to increase (Carriquiry 2015). 
For instance, estimates of the effect of climate change on 
changes in phenotypic traits should not be biased by meas-
urement error in trait measurements, although the error 
decreases the precision of estimates and increases the risk 
of false positive or negative results. On the other hand, 
estimates of the effect of changes in phenotypic traits on 
demographic rates [reproduction or survival (Kruuk et al. 
2002; O’Sullivan et al. 2019)] will tend to be biased down-
ward by measurement error in trait measurements and false 
negative results will tend to be more common.

Whether the trait measured with error is used as response 
or predictor, the impact of measurement quality on the accu-
racy of estimations depends on how much variation exists 
between individuals in the study population, relative to the 
amount of measurement error. Therefore, measurement 
error, if not accounted for, will weaken statistical infer-
ence for predictors that explain a relatively small amount 
of variation in the response variable. In that case, even a 
small amount of variation introduced by measurement error 
may become critical. When substantial measurement error is 
identified, authors should consider correcting for measure-
ment error, either by adjusting parameter estimates post-hoc, 
or preferably by modelling the measurement error directly 
in the analysis (Carriquiry 2015; Ponzi et al. 2018). This 
correction is especially important when the trait measured 
with error is used as a predictor. As a preventive measure, 
we suggest testing repeatability for a randomly selected sam-
ple of the individuals under study, before designing data 
collection protocols. Adapting sampling protocols to reduce 
expected measurement error, relative to between-individual 
differences, will not only improve the accuracy of parameter 
estimates, but also optimize costs involved.

Repeatability of a measurement can be improved by 
minimizing the within-individual variance via improving 
measurement precision. This can be done by averaging 
measurements of some within-individual replicates, using 
instruments with greater precision, employing experienced 
measurers or improving their skills prior to data collection. 
These strategies should improve repeatability of smaller 
traits, where overall repeatability is highly influenced by 
within-individual variance. However, little can be achieved 
for large traits, as most of the variance in measurements 



	 Evolutionary Biology

1 3

comprise among-individual variance. Yezerinac et al. (1992) 
showed that the reduction in variance of the mean, with each 
additional measurement (replicate), was relatively low for 
traits with low measurement error (or measurements with 
high repeatability). We caution that the repeatability of 
measurements may change depending on whether they are 
taken from live or dead individuals; measurement precision 
is likely to be lower for live individuals that struggle in hand.

Validity of Measurements

We found that the equation for the surface area of near 
elliptical cone was a good proxy for bill surface area and 
captured size variation within our sample of species. How-
ever, the quality of component trait measurements can 
affect estimates of bill surface area based on the equation. 
Our results for the species with the smallest bills (Malurus 
lamberti, Pardalotus striatus and Smicrornis brevirostris, 
with bill length range across individuals: 4.76–10.40 mm, 
bill width: 3.14–4.46  mm, bill depth: 2.5–4.16  mm) 
showed only a moderate association (R2 between 0.4 and 
0.7) between digital and manual estimates of bill surface 
area, perhaps due to high sensitivity to errors in manual 
measurements.

Bill length measurements of Malurus lamberti and Pard-
alotus striatus were inaccurate, evident from poor associa-
tions between manual and digital length measurements, and 
may have affected the surface area estimates. As discussed 
in previous studies, defining the precise location of the 
feather base for the bill length measurement is sometimes 
difficult, especially when feathers are worn (Winkler 1998). 
This might have affected the bill length measurements for 
these species. The accuracy of surface area estimates can 
be improved by reducing the errors in component manual 
measurements. Besides improving repeatability, researchers 
can consider alternative measurements of bill traits (e.g. bill 
length from bill tip to nares instead of feather base (Baldwin 
et al. 1931)) with high accuracy for problematic species.

In all species, but one (Acanthorhynchus tenuirostris), 
the mathematical formula based on multiple measurements 
(length, depth and width) was more accurate for predicting 
variation in bill surface area than the linear measurement of 
bill length alone. On average, there was a 23% reduction in 
R2 when using bill length as the proxy to describe variation 
in bill surface area. Perktaş and Gosler (2010) indicated that 
multivariate approaches are better than univariate measures 
for size estimation. From the results of this study, none of the 
proxies of bill surface area i.e. mathematical formula based 
on estimations or the bill length, are impacted by curvature 
of the upper mandible. Curved bill length was almost fully 
explained by the equivalent linear measurement (straight 
length) in all species (R2 > 0.7). Nevertheless, given that 
the diversity of bill shapes and sizes was relatively limited 

in our study, researchers need to consider the efficacy of the 
technique for species with different bill shapes.

Although accurate estimation of bill surface area is pos-
sible with microCT data following the procedure demon-
strated in this study, its use will be limited due to high costs, 
tediousness of process as well as the availability of scanning 
facilities (Gould 2014; Openshaw et al. 2017). In particular, 
the approach is less feasible in large scale studies that exam-
ine several hundred specimens or for field-based studies. 
However, the approach will be extremely useful when test-
ing the validity of low-cost alternatives for different species. 
Friedman et al. (2017) estimated bill surface area using a 
2D image in their study. However, as pointed out in previ-
ous studies, flattening of 3D to a 2D image will lose some 
information related to shape variation in complex structures, 
in turn affecting surface area approximations (Buser et al. 
2018; Andrea and Chiappelli 2019). Our study demonstrates 
the potential of using 3D imaging technology to assess the 
validity of trait measurements, another use of this technol-
ogy for biologists (Semple et al. 2019).

We clearly showed that the manual tarsus length meas-
urement was strongly associated with the underlying tar-
sometatarsus indicating that it accurately represents tar-
sus size. Some authors have suggested that the surface 
measurements of tarsus could be unreliable on museum 
specimens, due to a lack of clarity of landmarks, but this 
is not supported by our findings (Perktaş and Gosler 2010). 
Across species, wing length is a strong predictor of wing 
bone length, capturing a large proportion of variation 
(R2 = 0.793 for Wcp and R2 = 0.870 for Wc), but is less 
ideal than tarsometatarsus as a measure of tarsus length, 
because the proportion of variation captured is lower and 
the slopes of wing bones on wing length are less than one 
(0.169 for Wcp and 0.098 for Wc). Indeed, wing length 
does not depend only on bone length, but also on feather 
length, and the allometric relationship between wing bone 
and wing feather length may vary among species (Nudds 
2007; Nudds et al. 2011). Findings suggests that wing 
length is a reasonable proxy for structural body size, for 
cross-species studies, assuming the wing bones themselves 
correlate with the size of overall skeletal frame, although 
testing this was outside the scope of this study. The eco-
logical context in which these traits are used needs to be 
considered on a case by case basis. Feather wear and abra-
sion had no effect on the wing length, wing bone associa-
tion in this study.
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